{"title":"害虫的生物调控可以从多样化的捕食模式中获益。","authors":"Deyatima Ghosh,Amaël Borzée","doi":"10.1098/rsos.240535","DOIUrl":null,"url":null,"abstract":"Increases in agricultural intensity due to anthropogenic demands alongside the need to reduce the reliance on pesticides have resulted in an urgent need for sustainable options for pest control. Biological pest regulation is an alternative strategy that relies on natural predators and is essentially a by-product of successful foraging. Therefore, knowledge of the predator's specific foraging behaviour can significantly improve bioregulation. In this article, we discuss the implications of predators' diverse foraging modes on their efficiency as bioregulators of crop pests using amphibians and reptiles as models. Amphibians and reptiles are promising bioregulators as they are insectivorous, and the diversity in their foraging styles-ambush and active foraging, differing in energy expenditure, movement, cognitive abilities, reliance on cues, response to predatory risk, competition and prey salience-can have specific impacts on pest regulation. We propose the uptake of this concept into strategizing pest management actions. We are now moving towards an era of biological pest regulation, which is the most targeted, economically profitable method with zero negative impact on the ecosystem. Utilizing diverse traits associated with the different foraging modes in vertebrate predators can be a crucial tool in allowing pest management to adapt to the extreme challenges it is facing.","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biological pest regulation can benefit from diverse predation modes.\",\"authors\":\"Deyatima Ghosh,Amaël Borzée\",\"doi\":\"10.1098/rsos.240535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increases in agricultural intensity due to anthropogenic demands alongside the need to reduce the reliance on pesticides have resulted in an urgent need for sustainable options for pest control. Biological pest regulation is an alternative strategy that relies on natural predators and is essentially a by-product of successful foraging. Therefore, knowledge of the predator's specific foraging behaviour can significantly improve bioregulation. In this article, we discuss the implications of predators' diverse foraging modes on their efficiency as bioregulators of crop pests using amphibians and reptiles as models. Amphibians and reptiles are promising bioregulators as they are insectivorous, and the diversity in their foraging styles-ambush and active foraging, differing in energy expenditure, movement, cognitive abilities, reliance on cues, response to predatory risk, competition and prey salience-can have specific impacts on pest regulation. We propose the uptake of this concept into strategizing pest management actions. We are now moving towards an era of biological pest regulation, which is the most targeted, economically profitable method with zero negative impact on the ecosystem. Utilizing diverse traits associated with the different foraging modes in vertebrate predators can be a crucial tool in allowing pest management to adapt to the extreme challenges it is facing.\",\"PeriodicalId\":21525,\"journal\":{\"name\":\"Royal Society Open Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Royal Society Open Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsos.240535\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.240535","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Biological pest regulation can benefit from diverse predation modes.
Increases in agricultural intensity due to anthropogenic demands alongside the need to reduce the reliance on pesticides have resulted in an urgent need for sustainable options for pest control. Biological pest regulation is an alternative strategy that relies on natural predators and is essentially a by-product of successful foraging. Therefore, knowledge of the predator's specific foraging behaviour can significantly improve bioregulation. In this article, we discuss the implications of predators' diverse foraging modes on their efficiency as bioregulators of crop pests using amphibians and reptiles as models. Amphibians and reptiles are promising bioregulators as they are insectivorous, and the diversity in their foraging styles-ambush and active foraging, differing in energy expenditure, movement, cognitive abilities, reliance on cues, response to predatory risk, competition and prey salience-can have specific impacts on pest regulation. We propose the uptake of this concept into strategizing pest management actions. We are now moving towards an era of biological pest regulation, which is the most targeted, economically profitable method with zero negative impact on the ecosystem. Utilizing diverse traits associated with the different foraging modes in vertebrate predators can be a crucial tool in allowing pest management to adapt to the extreme challenges it is facing.
期刊介绍:
Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review.
The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.