利用涂有氧化石墨烯的 3D 打印高多孔 Ti-6Al-4V 支架促进骨生成

IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Biomaterials Science Pub Date : 2024-09-16 DOI:10.1039/D4BM00970C
Hee Jeong Jang, Moon Sung Kang, Jinju Jang, Dohyung Lim, Seong-Won Choi, Tae-Gon Jung, Heoung-Jae Chun, Bongju Kim and Dong-Wook Han
{"title":"利用涂有氧化石墨烯的 3D 打印高多孔 Ti-6Al-4V 支架促进骨生成","authors":"Hee Jeong Jang, Moon Sung Kang, Jinju Jang, Dohyung Lim, Seong-Won Choi, Tae-Gon Jung, Heoung-Jae Chun, Bongju Kim and Dong-Wook Han","doi":"10.1039/D4BM00970C","DOIUrl":null,"url":null,"abstract":"<p >Bone tissue engineering (BTE) strategies have been developed to address challenges in orthopedic and dental therapy by expediting osseointegration and new bone formation. In this study, we developed irregular porous Ti–6Al–4V scaffolds coated with reduced graphene oxide (rGO), specifically rGO-pTi, and investigated their ability to stimulate osseointegration <em>in vivo</em>. The rGO-pTi scaffolds exhibited unique irregular micropores and high hydrophilicity, facilitating protein adsorption and cell growth. <em>In vitro</em> assays revealed that the rGO-pTi scaffolds increased alkaline phosphatase (ALP) activity, mineralization nodule formation, and osteogenic gene upregulation in MC3T3-E1 preosteoblasts. Moreover, <em>in vivo</em> transplantation of rGO-pTi scaffolds in rabbit calvarial bone defects showed improved bone matrix formation and osseointegration without hemorrhage. These findings highlight the potential of combining rGO with irregular micropores as a promising BTE scaffold for bone regeneration.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 21","pages":" 5491-5503"},"PeriodicalIF":5.8000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing 3D printed highly porous Ti–6Al–4V scaffolds coated with graphene oxide to promote osteogenesis\",\"authors\":\"Hee Jeong Jang, Moon Sung Kang, Jinju Jang, Dohyung Lim, Seong-Won Choi, Tae-Gon Jung, Heoung-Jae Chun, Bongju Kim and Dong-Wook Han\",\"doi\":\"10.1039/D4BM00970C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Bone tissue engineering (BTE) strategies have been developed to address challenges in orthopedic and dental therapy by expediting osseointegration and new bone formation. In this study, we developed irregular porous Ti–6Al–4V scaffolds coated with reduced graphene oxide (rGO), specifically rGO-pTi, and investigated their ability to stimulate osseointegration <em>in vivo</em>. The rGO-pTi scaffolds exhibited unique irregular micropores and high hydrophilicity, facilitating protein adsorption and cell growth. <em>In vitro</em> assays revealed that the rGO-pTi scaffolds increased alkaline phosphatase (ALP) activity, mineralization nodule formation, and osteogenic gene upregulation in MC3T3-E1 preosteoblasts. Moreover, <em>in vivo</em> transplantation of rGO-pTi scaffolds in rabbit calvarial bone defects showed improved bone matrix formation and osseointegration without hemorrhage. These findings highlight the potential of combining rGO with irregular micropores as a promising BTE scaffold for bone regeneration.</p>\",\"PeriodicalId\":65,\"journal\":{\"name\":\"Biomaterials Science\",\"volume\":\" 21\",\"pages\":\" 5491-5503\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/bm/d4bm00970c\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/bm/d4bm00970c","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

骨组织工程(BTE)策略通过加速骨结合和新骨形成来应对骨科和牙科治疗中的挑战。在这项研究中,我们开发了涂有还原氧化石墨烯(rGO)的不规则多孔 Ti-6Al-4V 支架,即 rGO-pTi,并探索了它们在体内刺激骨结合的能力。rGO-pTi支架具有独特的不规则微孔和高亲水性,有利于蛋白质吸附和细胞生长。体外实验显示,rGO-pTi 支架促进了碱性磷酸酶(ALP)活性和矿化结节的形成,并上调了 MC3T3-E1 前成骨细胞的成骨基因。此外,rGO-pTi 支架在兔子腓骨缺损处的体内移植显示,骨基质形成和骨整合均得到了增强,且无出血现象。这些发现凸显了 rGO 与不规则微孔相结合的策略作为骨再生 BTE 支架的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Harnessing 3D printed highly porous Ti–6Al–4V scaffolds coated with graphene oxide to promote osteogenesis

Bone tissue engineering (BTE) strategies have been developed to address challenges in orthopedic and dental therapy by expediting osseointegration and new bone formation. In this study, we developed irregular porous Ti–6Al–4V scaffolds coated with reduced graphene oxide (rGO), specifically rGO-pTi, and investigated their ability to stimulate osseointegration in vivo. The rGO-pTi scaffolds exhibited unique irregular micropores and high hydrophilicity, facilitating protein adsorption and cell growth. In vitro assays revealed that the rGO-pTi scaffolds increased alkaline phosphatase (ALP) activity, mineralization nodule formation, and osteogenic gene upregulation in MC3T3-E1 preosteoblasts. Moreover, in vivo transplantation of rGO-pTi scaffolds in rabbit calvarial bone defects showed improved bone matrix formation and osseointegration without hemorrhage. These findings highlight the potential of combining rGO with irregular micropores as a promising BTE scaffold for bone regeneration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomaterials Science
Biomaterials Science MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.50%
发文量
556
期刊介绍: Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.
期刊最新文献
Aliphatic polycarbonates with acid degradable ketal side groups as multi-pH-responsive immunodrug nanocarriers. Chiral recognition of amino acids through homochiral metallacycle [ZnCl2L]2. Dimethysiloxane polymer for the effective transdermal delivery of donepezil in Alzheimer's disease treatment. Trends in protein derived materials for wound care applications. Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1