用指南针可视化时态主题嵌入

Daniel Palamarchuk, Lemara Williams, Brian Mayer, Thomas Danielson, Rebecca Faust, Larry Deschaine, Chris North
{"title":"用指南针可视化时态主题嵌入","authors":"Daniel Palamarchuk, Lemara Williams, Brian Mayer, Thomas Danielson, Rebecca Faust, Larry Deschaine, Chris North","doi":"arxiv-2409.10649","DOIUrl":null,"url":null,"abstract":"Dynamic topic modeling is useful at discovering the development and change in\nlatent topics over time. However, present methodology relies on algorithms that\nseparate document and word representations. This prevents the creation of a\nmeaningful embedding space where changes in word usage and documents can be\ndirectly analyzed in a temporal context. This paper proposes an expansion of\nthe compass-aligned temporal Word2Vec methodology into dynamic topic modeling.\nSuch a method allows for the direct comparison of word and document embeddings\nacross time in dynamic topics. This enables the creation of visualizations that\nincorporate temporal word embeddings within the context of documents into topic\nvisualizations. In experiments against the current state-of-the-art, our\nproposed method demonstrates overall competitive performance in topic relevancy\nand diversity across temporal datasets of varying size. Simultaneously, it\nprovides insightful visualizations focused on temporal word embeddings while\nmaintaining the insights provided by global topic evolution, advancing our\nunderstanding of how topics evolve over time.","PeriodicalId":501174,"journal":{"name":"arXiv - CS - Graphics","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualizing Temporal Topic Embeddings with a Compass\",\"authors\":\"Daniel Palamarchuk, Lemara Williams, Brian Mayer, Thomas Danielson, Rebecca Faust, Larry Deschaine, Chris North\",\"doi\":\"arxiv-2409.10649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic topic modeling is useful at discovering the development and change in\\nlatent topics over time. However, present methodology relies on algorithms that\\nseparate document and word representations. This prevents the creation of a\\nmeaningful embedding space where changes in word usage and documents can be\\ndirectly analyzed in a temporal context. This paper proposes an expansion of\\nthe compass-aligned temporal Word2Vec methodology into dynamic topic modeling.\\nSuch a method allows for the direct comparison of word and document embeddings\\nacross time in dynamic topics. This enables the creation of visualizations that\\nincorporate temporal word embeddings within the context of documents into topic\\nvisualizations. In experiments against the current state-of-the-art, our\\nproposed method demonstrates overall competitive performance in topic relevancy\\nand diversity across temporal datasets of varying size. Simultaneously, it\\nprovides insightful visualizations focused on temporal word embeddings while\\nmaintaining the insights provided by global topic evolution, advancing our\\nunderstanding of how topics evolve over time.\",\"PeriodicalId\":501174,\"journal\":{\"name\":\"arXiv - CS - Graphics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动态主题建模有助于发现长期主题的发展和变化。然而,目前的方法依赖于将文档和词语表征分开的算法。这就妨碍了创建一个有意义的嵌入空间,在这个空间中,可以在时间上下文中直接分析词的用法和文档的变化。本文提出将指南针对齐的时态 Word2Vec 方法扩展到动态主题建模中。这样就可以创建可视化,将文档上下文中的时态词嵌入整合到主题可视化中。在与当前最先进方法的对比实验中,我们提出的方法在不同规模的时态数据集上的主题相关性和多样性方面表现出了全面的竞争力。同时,它还提供了具有洞察力的可视化,重点关注时态词嵌入,同时保持了全局话题演化所提供的洞察力,从而推进了我们对话题如何随时间演化的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visualizing Temporal Topic Embeddings with a Compass
Dynamic topic modeling is useful at discovering the development and change in latent topics over time. However, present methodology relies on algorithms that separate document and word representations. This prevents the creation of a meaningful embedding space where changes in word usage and documents can be directly analyzed in a temporal context. This paper proposes an expansion of the compass-aligned temporal Word2Vec methodology into dynamic topic modeling. Such a method allows for the direct comparison of word and document embeddings across time in dynamic topics. This enables the creation of visualizations that incorporate temporal word embeddings within the context of documents into topic visualizations. In experiments against the current state-of-the-art, our proposed method demonstrates overall competitive performance in topic relevancy and diversity across temporal datasets of varying size. Simultaneously, it provides insightful visualizations focused on temporal word embeddings while maintaining the insights provided by global topic evolution, advancing our understanding of how topics evolve over time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations A Missing Data Imputation GAN for Character Sprite Generation Visualizing Temporal Topic Embeddings with a Compass Playground v3: Improving Text-to-Image Alignment with Deep-Fusion Large Language Models Phys3DGS: Physically-based 3D Gaussian Splatting for Inverse Rendering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1