Alexander Daniel Sapp, Carlos Eduardo Díaz-Cano, Jozef Lengyel, Lucía Abarca-Cabrera, Paula Fraga-García
{"title":"磁性纳米粒子上的氨基酸吸附与理化参数的相关性","authors":"Alexander Daniel Sapp, Carlos Eduardo Díaz-Cano, Jozef Lengyel, Lucía Abarca-Cabrera, Paula Fraga-García","doi":"10.1002/cnma.202400280","DOIUrl":null,"url":null,"abstract":"We analyze the adsorption of the proteinogenic amino acids (AAs) glutamine, glutamic acid, lysine, tyrosine, proline, and valine onto bare iron oxide nanoparticles (approx. 10 nm). Aiming to identify the governing principles of low molecular weight corona, which remain underinvestigated, our study covers broad concentration ranges up to the solubility limit of the AAs. Isothermal experiments reveal that the highly soluble AAs valine, proline, and lysine form extensive multilayers on the nanoparticle surface, and infrared measurements indicate intermolecular interactions, particularly with valine and lysine, for higher AA contents. Conversely, the low solubility of tyrosine and glutamic acid restricts their adsorption capacity, despite their higher partitioning on the solid surface. Parameters derived from fitting a classic saturation model seem to align with well‐documented physicochemical properties such as the hydrophobicity and the complexity indices—a promising first step towards formulating design principles. Scaling these parameters by the AA solubility reveals a clear correlation with the adsorption behavior. In adsorption experiments with AA model mixtures, sequential incubation increases the adsorption capacity for valine and proline, whereas simultaneous incubation with these AAs reduces tyrosine’s capacity. Future studies should seek to elucidate novel adsorption patterns to advance our understanding of corona growth and evolution mechanisms","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"9 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amino Acid Adsorption onto Magnetic Nanoparticles Reveals Correlations with Physicochemical Parameters\",\"authors\":\"Alexander Daniel Sapp, Carlos Eduardo Díaz-Cano, Jozef Lengyel, Lucía Abarca-Cabrera, Paula Fraga-García\",\"doi\":\"10.1002/cnma.202400280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the adsorption of the proteinogenic amino acids (AAs) glutamine, glutamic acid, lysine, tyrosine, proline, and valine onto bare iron oxide nanoparticles (approx. 10 nm). Aiming to identify the governing principles of low molecular weight corona, which remain underinvestigated, our study covers broad concentration ranges up to the solubility limit of the AAs. Isothermal experiments reveal that the highly soluble AAs valine, proline, and lysine form extensive multilayers on the nanoparticle surface, and infrared measurements indicate intermolecular interactions, particularly with valine and lysine, for higher AA contents. Conversely, the low solubility of tyrosine and glutamic acid restricts their adsorption capacity, despite their higher partitioning on the solid surface. Parameters derived from fitting a classic saturation model seem to align with well‐documented physicochemical properties such as the hydrophobicity and the complexity indices—a promising first step towards formulating design principles. Scaling these parameters by the AA solubility reveals a clear correlation with the adsorption behavior. In adsorption experiments with AA model mixtures, sequential incubation increases the adsorption capacity for valine and proline, whereas simultaneous incubation with these AAs reduces tyrosine’s capacity. Future studies should seek to elucidate novel adsorption patterns to advance our understanding of corona growth and evolution mechanisms\",\"PeriodicalId\":54339,\"journal\":{\"name\":\"ChemNanoMat\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemNanoMat\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/cnma.202400280\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/cnma.202400280","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
我们分析了蛋白源氨基酸(AAs)谷氨酰胺、谷氨酸、赖氨酸、酪氨酸、脯氨酸和缬氨酸在裸氧化铁纳米颗粒(约 10 nm)上的吸附情况。低分子量电晕的基本原理尚未得到充分研究,我们的研究旨在确定低分子量电晕的基本原理。等温实验显示,高溶解度 AAs 缬氨酸、脯氨酸和赖氨酸在纳米粒子表面形成了广泛的多层膜,红外测量显示,当 AAs 含量较高时,分子间相互作用,尤其是与缬氨酸和赖氨酸的相互作用。相反,尽管酪氨酸和谷氨酸在固体表面的分配率较高,但它们的低溶解度限制了它们的吸附能力。通过拟合经典饱和模型得出的参数似乎与疏水性和复杂性指数等有据可查的理化特性相吻合--这是为制定设计原则迈出的充满希望的第一步。通过 AA 溶解度对这些参数进行缩放,可以发现它们与吸附行为有着明显的相关性。在 AA 模型混合物的吸附实验中,连续培养会提高缬氨酸和脯氨酸的吸附能力,而同时培养这些 AA 则会降低酪氨酸的吸附能力。未来的研究应寻求阐明新的吸附模式,以促进我们对电晕生长和演化机制的了解。
Amino Acid Adsorption onto Magnetic Nanoparticles Reveals Correlations with Physicochemical Parameters
We analyze the adsorption of the proteinogenic amino acids (AAs) glutamine, glutamic acid, lysine, tyrosine, proline, and valine onto bare iron oxide nanoparticles (approx. 10 nm). Aiming to identify the governing principles of low molecular weight corona, which remain underinvestigated, our study covers broad concentration ranges up to the solubility limit of the AAs. Isothermal experiments reveal that the highly soluble AAs valine, proline, and lysine form extensive multilayers on the nanoparticle surface, and infrared measurements indicate intermolecular interactions, particularly with valine and lysine, for higher AA contents. Conversely, the low solubility of tyrosine and glutamic acid restricts their adsorption capacity, despite their higher partitioning on the solid surface. Parameters derived from fitting a classic saturation model seem to align with well‐documented physicochemical properties such as the hydrophobicity and the complexity indices—a promising first step towards formulating design principles. Scaling these parameters by the AA solubility reveals a clear correlation with the adsorption behavior. In adsorption experiments with AA model mixtures, sequential incubation increases the adsorption capacity for valine and proline, whereas simultaneous incubation with these AAs reduces tyrosine’s capacity. Future studies should seek to elucidate novel adsorption patterns to advance our understanding of corona growth and evolution mechanisms
ChemNanoMatEnergy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍:
ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.