David Steiner, Tibor Bartók, Michael Sulyok, András Szekeres, Mónika Varga, Levente Horváth, Helmut Rost
{"title":"霉菌毒素标准物质的全球视角(第一部分):黄曲霉毒素 B1、脱氧雪腐镰刀菌烯醇和玉米赤霉烯酮等多供应商比较研究的启示","authors":"David Steiner, Tibor Bartók, Michael Sulyok, András Szekeres, Mónika Varga, Levente Horváth, Helmut Rost","doi":"10.3390/toxins16090397","DOIUrl":null,"url":null,"abstract":"We conducted a comprehensive examination of liquid mycotoxin reference standards. A total of 30 different standards were tested, each containing 10 samples of three distinct substances: Aflatoxin B1, Deoxynivalenol, and Zearalenone. The standards were sourced from 10 different global market leading manufacturers. To facilitate comparison, all the standard sets were adjusted to the same concentration level. The standards were analyzed using the techniques LC-MS/MS, HPLC-DAD, and LC-HRMS to assess their quality attributes. Regarding the validation of the reference values, it was observed that 30% of the suppliers provided reference standards that were either below the lower acceptance limit or above the higher acceptance limit, confirmed by both the LC-MS/MS and HPLC-DAD methods. Furthermore, a total of 12 impurities were found in the DON standards, 10 in the AFB1 standards, and 8 in the ZON standards, distributed across all the suppliers. Therefore, this study suggests relevant adjustments to the ISO 17034 standard, proposing that the purity of a raw material should be uniformly based on q-NMR analysis, as most manufacturers state the purity of their certificates is determined using HPLC-UV or LC-MS/MS. Liquid standards with a shelf life of ≤1 year should not exceed an uncertainty of 3%. Standards that have a longer shelf life should not have more than 5% uncertainty. This study also emphasizes the importance of stability. The standards should undergo continuous long-term monitoring; otherwise, products may exhibit a target value of only 80%, as seen in one instance. It is also recommended to include proof of HPLC and LC-MS/MS analyses on the certificate of each released batch of a final product.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Perspectives on Mycotoxin Reference Materials (Part I): Insights from Multi-Supplier Comparison Study Including Aflatoxin B1, Deoxynivalenol and Zearalenone\",\"authors\":\"David Steiner, Tibor Bartók, Michael Sulyok, András Szekeres, Mónika Varga, Levente Horváth, Helmut Rost\",\"doi\":\"10.3390/toxins16090397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We conducted a comprehensive examination of liquid mycotoxin reference standards. A total of 30 different standards were tested, each containing 10 samples of three distinct substances: Aflatoxin B1, Deoxynivalenol, and Zearalenone. The standards were sourced from 10 different global market leading manufacturers. To facilitate comparison, all the standard sets were adjusted to the same concentration level. The standards were analyzed using the techniques LC-MS/MS, HPLC-DAD, and LC-HRMS to assess their quality attributes. Regarding the validation of the reference values, it was observed that 30% of the suppliers provided reference standards that were either below the lower acceptance limit or above the higher acceptance limit, confirmed by both the LC-MS/MS and HPLC-DAD methods. Furthermore, a total of 12 impurities were found in the DON standards, 10 in the AFB1 standards, and 8 in the ZON standards, distributed across all the suppliers. Therefore, this study suggests relevant adjustments to the ISO 17034 standard, proposing that the purity of a raw material should be uniformly based on q-NMR analysis, as most manufacturers state the purity of their certificates is determined using HPLC-UV or LC-MS/MS. Liquid standards with a shelf life of ≤1 year should not exceed an uncertainty of 3%. Standards that have a longer shelf life should not have more than 5% uncertainty. This study also emphasizes the importance of stability. The standards should undergo continuous long-term monitoring; otherwise, products may exhibit a target value of only 80%, as seen in one instance. It is also recommended to include proof of HPLC and LC-MS/MS analyses on the certificate of each released batch of a final product.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/toxins16090397\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/toxins16090397","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Global Perspectives on Mycotoxin Reference Materials (Part I): Insights from Multi-Supplier Comparison Study Including Aflatoxin B1, Deoxynivalenol and Zearalenone
We conducted a comprehensive examination of liquid mycotoxin reference standards. A total of 30 different standards were tested, each containing 10 samples of three distinct substances: Aflatoxin B1, Deoxynivalenol, and Zearalenone. The standards were sourced from 10 different global market leading manufacturers. To facilitate comparison, all the standard sets were adjusted to the same concentration level. The standards were analyzed using the techniques LC-MS/MS, HPLC-DAD, and LC-HRMS to assess their quality attributes. Regarding the validation of the reference values, it was observed that 30% of the suppliers provided reference standards that were either below the lower acceptance limit or above the higher acceptance limit, confirmed by both the LC-MS/MS and HPLC-DAD methods. Furthermore, a total of 12 impurities were found in the DON standards, 10 in the AFB1 standards, and 8 in the ZON standards, distributed across all the suppliers. Therefore, this study suggests relevant adjustments to the ISO 17034 standard, proposing that the purity of a raw material should be uniformly based on q-NMR analysis, as most manufacturers state the purity of their certificates is determined using HPLC-UV or LC-MS/MS. Liquid standards with a shelf life of ≤1 year should not exceed an uncertainty of 3%. Standards that have a longer shelf life should not have more than 5% uncertainty. This study also emphasizes the importance of stability. The standards should undergo continuous long-term monitoring; otherwise, products may exhibit a target value of only 80%, as seen in one instance. It is also recommended to include proof of HPLC and LC-MS/MS analyses on the certificate of each released batch of a final product.