规范和非规范蛋白质磷酸化的不断扩展。

IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Trends in Biochemical Sciences Pub Date : 2024-11-01 DOI:10.1016/j.tibs.2024.08.004
Thibault Houles , Sang-Oh Yoon , Philippe P. Roux
{"title":"规范和非规范蛋白质磷酸化的不断扩展。","authors":"Thibault Houles ,&nbsp;Sang-Oh Yoon ,&nbsp;Philippe P. Roux","doi":"10.1016/j.tibs.2024.08.004","DOIUrl":null,"url":null,"abstract":"<div><div>Protein phosphorylation is a crucial regulatory mechanism in cell signaling, acting as a molecular switch that modulates protein function. Catalyzed by protein kinases and reversed by phosphoprotein phosphatases, it is essential in both normal physiological and pathological states. Recent advances have uncovered a vast and intricate landscape of protein phosphorylation that include histidine phosphorylation and more unconventional events, such as pyrophosphorylation and polyphosphorylation. Many questions remain about the true size of the phosphoproteome and, more importantly, its site-specific functional relevance. The involvement of unconventional actors such as pseudokinases and pseudophosphatases adds further complexity to be resolved. This review explores recent discoveries and ongoing challenges, highlighting the need for continued research to fully elucidate the roles and regulation of protein phosphorylation.</div></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"49 11","pages":"Pages 986-999"},"PeriodicalIF":11.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The expanding landscape of canonical and non-canonical protein phosphorylation\",\"authors\":\"Thibault Houles ,&nbsp;Sang-Oh Yoon ,&nbsp;Philippe P. Roux\",\"doi\":\"10.1016/j.tibs.2024.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Protein phosphorylation is a crucial regulatory mechanism in cell signaling, acting as a molecular switch that modulates protein function. Catalyzed by protein kinases and reversed by phosphoprotein phosphatases, it is essential in both normal physiological and pathological states. Recent advances have uncovered a vast and intricate landscape of protein phosphorylation that include histidine phosphorylation and more unconventional events, such as pyrophosphorylation and polyphosphorylation. Many questions remain about the true size of the phosphoproteome and, more importantly, its site-specific functional relevance. The involvement of unconventional actors such as pseudokinases and pseudophosphatases adds further complexity to be resolved. This review explores recent discoveries and ongoing challenges, highlighting the need for continued research to fully elucidate the roles and regulation of protein phosphorylation.</div></div>\",\"PeriodicalId\":440,\"journal\":{\"name\":\"Trends in Biochemical Sciences\",\"volume\":\"49 11\",\"pages\":\"Pages 986-999\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Biochemical Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0968000424001919\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Biochemical Sciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968000424001919","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质磷酸化是细胞信号传导过程中的重要调节机制,是调节蛋白质功能的分子开关。它由蛋白激酶催化,由磷蛋白磷酸酶逆转,在正常生理和病理状态下都至关重要。最近的研究进展揭示了蛋白质磷酸化错综复杂的巨大格局,其中包括组氨酸磷酸化和更多非常规事件,如焦磷酸化和多磷酸化。关于磷酸化蛋白质组的真正规模,更重要的是其特定位点的功能相关性,仍存在许多问题。假激酶和假磷酸酶等非常规参与者的参与进一步增加了有待解决的复杂性。这篇综述探讨了最近的发现和正在面临的挑战,强调了继续研究以全面阐明蛋白质磷酸化的作用和调控的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The expanding landscape of canonical and non-canonical protein phosphorylation
Protein phosphorylation is a crucial regulatory mechanism in cell signaling, acting as a molecular switch that modulates protein function. Catalyzed by protein kinases and reversed by phosphoprotein phosphatases, it is essential in both normal physiological and pathological states. Recent advances have uncovered a vast and intricate landscape of protein phosphorylation that include histidine phosphorylation and more unconventional events, such as pyrophosphorylation and polyphosphorylation. Many questions remain about the true size of the phosphoproteome and, more importantly, its site-specific functional relevance. The involvement of unconventional actors such as pseudokinases and pseudophosphatases adds further complexity to be resolved. This review explores recent discoveries and ongoing challenges, highlighting the need for continued research to fully elucidate the roles and regulation of protein phosphorylation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Biochemical Sciences
Trends in Biochemical Sciences 生物-生化与分子生物学
CiteScore
22.90
自引率
0.70%
发文量
148
审稿时长
6-12 weeks
期刊介绍: For over 40 years, Trends in Biochemical Sciences (TIBS) has been a leading publication keeping readers informed about recent advances in all areas of biochemistry and molecular biology. Through monthly, peer-reviewed issues, TIBS covers a wide range of topics, from traditional subjects like protein structure and function to emerging areas in signaling and metabolism. Articles are curated by the Editor and authored by top researchers in their fields, with a focus on moving beyond simple literature summaries to providing novel insights and perspectives. Each issue primarily features concise and timely Reviews and Opinions, supplemented by shorter articles including Spotlights, Forums, and Technology of the Month, as well as impactful pieces like Science & Society and Scientific Life articles.
期刊最新文献
How does p53 work? Regulation by the intrinsically disordered domains. Textbook oxidative phosphorylation needs to be rewritten. ERK-dependent protein phosphorylation in KRAS-mutant cancer: a mix of the expected and surprising. TEX264-mediated selective autophagy directs DNA damage repair. Eph receptor signaling complexes in the plasma membrane.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1