{"title":"通过 CPU-GPU-FPGA 异构计算,在基于比色法相机的单分子定位显微镜中进行实时数据处理。","authors":"Jiaxun Lin,Kun Wang,Zhen-Li Huang","doi":"10.1364/boe.534941","DOIUrl":null,"url":null,"abstract":"Because conventional low-light cameras used in single-molecule localization microscopy (SMLM) do not have the ability to distinguish colors, it is often necessary to employ a dedicated optical system and/or a complicated image analysis procedure to realize multi-color SMLM. Recently, researchers explored the potential of a new kind of low-light camera called colorimetry camera as an alternative detector in multi-color SMLM, and achieved two-color SMLM under a simple optical system, with a comparable cross-talk to the best reported values. However, extracting images from all color channels is a necessary but lengthy process in colorimetry camera-based SMLM (called CC-STORM), because this process requires the sequential traversal of a massive number of pixels. By taking advantage of the parallelism and pipeline characteristics of FPGA, in this paper, we report an updated multi-color SMLM method called HCC-STORM, which integrated the data processing tasks in CC-STORM into a home-built CPU-GPU-FPGA heterogeneous computing platform. We show that, without scarifying the original performance of CC-STORM, the execution speed of HCC-STORM was increased by approximately three times. Actually, in HCC-STORM, the total data processing time for each raw image with 1024 × 1024 pixels was 26.9 ms. This improvement enabled real-time data processing for a field of view of 1024 × 1024 pixels and an exposure time of 30 ms (a typical exposure time in CC-STORM). Furthermore, to reduce the difficulty of deploying algorithms into the heterogeneous computing platform, we also report the necessary interfaces for four commonly used high-level programming languages, including C/C++, Python, Java, and Matlab. This study not only pushes forward the mature of CC-STORM, but also presents a powerful computing platform for tasks with heavy computation load.","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"64 1","pages":"5560-5573"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time data processing in colorimetry camera-based single-molecule localization microscopy via CPU-GPU-FPGA heterogeneous computation.\",\"authors\":\"Jiaxun Lin,Kun Wang,Zhen-Li Huang\",\"doi\":\"10.1364/boe.534941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because conventional low-light cameras used in single-molecule localization microscopy (SMLM) do not have the ability to distinguish colors, it is often necessary to employ a dedicated optical system and/or a complicated image analysis procedure to realize multi-color SMLM. Recently, researchers explored the potential of a new kind of low-light camera called colorimetry camera as an alternative detector in multi-color SMLM, and achieved two-color SMLM under a simple optical system, with a comparable cross-talk to the best reported values. However, extracting images from all color channels is a necessary but lengthy process in colorimetry camera-based SMLM (called CC-STORM), because this process requires the sequential traversal of a massive number of pixels. By taking advantage of the parallelism and pipeline characteristics of FPGA, in this paper, we report an updated multi-color SMLM method called HCC-STORM, which integrated the data processing tasks in CC-STORM into a home-built CPU-GPU-FPGA heterogeneous computing platform. We show that, without scarifying the original performance of CC-STORM, the execution speed of HCC-STORM was increased by approximately three times. Actually, in HCC-STORM, the total data processing time for each raw image with 1024 × 1024 pixels was 26.9 ms. This improvement enabled real-time data processing for a field of view of 1024 × 1024 pixels and an exposure time of 30 ms (a typical exposure time in CC-STORM). Furthermore, to reduce the difficulty of deploying algorithms into the heterogeneous computing platform, we also report the necessary interfaces for four commonly used high-level programming languages, including C/C++, Python, Java, and Matlab. This study not only pushes forward the mature of CC-STORM, but also presents a powerful computing platform for tasks with heavy computation load.\",\"PeriodicalId\":8969,\"journal\":{\"name\":\"Biomedical optics express\",\"volume\":\"64 1\",\"pages\":\"5560-5573\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical optics express\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1364/boe.534941\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/boe.534941","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Real-time data processing in colorimetry camera-based single-molecule localization microscopy via CPU-GPU-FPGA heterogeneous computation.
Because conventional low-light cameras used in single-molecule localization microscopy (SMLM) do not have the ability to distinguish colors, it is often necessary to employ a dedicated optical system and/or a complicated image analysis procedure to realize multi-color SMLM. Recently, researchers explored the potential of a new kind of low-light camera called colorimetry camera as an alternative detector in multi-color SMLM, and achieved two-color SMLM under a simple optical system, with a comparable cross-talk to the best reported values. However, extracting images from all color channels is a necessary but lengthy process in colorimetry camera-based SMLM (called CC-STORM), because this process requires the sequential traversal of a massive number of pixels. By taking advantage of the parallelism and pipeline characteristics of FPGA, in this paper, we report an updated multi-color SMLM method called HCC-STORM, which integrated the data processing tasks in CC-STORM into a home-built CPU-GPU-FPGA heterogeneous computing platform. We show that, without scarifying the original performance of CC-STORM, the execution speed of HCC-STORM was increased by approximately three times. Actually, in HCC-STORM, the total data processing time for each raw image with 1024 × 1024 pixels was 26.9 ms. This improvement enabled real-time data processing for a field of view of 1024 × 1024 pixels and an exposure time of 30 ms (a typical exposure time in CC-STORM). Furthermore, to reduce the difficulty of deploying algorithms into the heterogeneous computing platform, we also report the necessary interfaces for four commonly used high-level programming languages, including C/C++, Python, Java, and Matlab. This study not only pushes forward the mature of CC-STORM, but also presents a powerful computing platform for tasks with heavy computation load.
期刊介绍:
The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including:
Tissue optics and spectroscopy
Novel microscopies
Optical coherence tomography
Diffuse and fluorescence tomography
Photoacoustic and multimodal imaging
Molecular imaging and therapies
Nanophotonic biosensing
Optical biophysics/photobiology
Microfluidic optical devices
Vision research.