利用全息图对微观物体进行硅学全角度高动态范围散射。

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Biomedical optics express Pub Date : 2024-08-15 DOI:10.1364/boe.528698
Seung Kyu Kang,Kyoohyun Kim,Jinsoo Jeong,Sunghee Hong,YongKeun Park,Jonghwa Shin
{"title":"利用全息图对微观物体进行硅学全角度高动态范围散射。","authors":"Seung Kyu Kang,Kyoohyun Kim,Jinsoo Jeong,Sunghee Hong,YongKeun Park,Jonghwa Shin","doi":"10.1364/boe.528698","DOIUrl":null,"url":null,"abstract":"Accurate optical characterization of microscopic objects is crucial in academic research, product development, and clinical diagnosis. We present a method for obtaining full and high-dynamic range, angle-resolved light scattering attributes of microparticles, enabling distinction of variations in both overall morphology and detailed internal structures. This method overcomes previous limitations in observable scattering angles and dynamic range of signals through computationally assisted three-dimensional holotomography. This advancement is significant for particles spanning tens of wavelengths, such as human erythrocytes, which have historically posed measurement challenges due to faint side-scattering signals indicative of their complex interiors. Our technique addresses three key challenges in optical side-scattering analysis: limited observational angular range, reliance on simplified computational models, and low signal-to-noise ratios in both experimental and computational evaluations. We incorporate three-dimensional tomographic complex refractive index data from Fourier-transform light scattering into a tailored finite-difference time-domain simulation space. This approach facilitates precise near-to-far-field transformations. The process yields complete full-angle scattering phase functions, crucial for particles like Plasmodium falciparum-parasitized erythrocytes, predominantly involved in forward scattering. The resultant scattering data exhibit an extreme dynamic range exceeding 100 dB at various incident angles of a He-Ne laser. These findings have the potential to develop point-of-care, cost-effective, and rapid malaria diagnostic tools, inspiring further clinical and research applications in microparticle scattering.","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"14 1","pages":"5238-5250"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In silico full-angle high-dynamic range scattering of microscopic objects exploiting holotomography.\",\"authors\":\"Seung Kyu Kang,Kyoohyun Kim,Jinsoo Jeong,Sunghee Hong,YongKeun Park,Jonghwa Shin\",\"doi\":\"10.1364/boe.528698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate optical characterization of microscopic objects is crucial in academic research, product development, and clinical diagnosis. We present a method for obtaining full and high-dynamic range, angle-resolved light scattering attributes of microparticles, enabling distinction of variations in both overall morphology and detailed internal structures. This method overcomes previous limitations in observable scattering angles and dynamic range of signals through computationally assisted three-dimensional holotomography. This advancement is significant for particles spanning tens of wavelengths, such as human erythrocytes, which have historically posed measurement challenges due to faint side-scattering signals indicative of their complex interiors. Our technique addresses three key challenges in optical side-scattering analysis: limited observational angular range, reliance on simplified computational models, and low signal-to-noise ratios in both experimental and computational evaluations. We incorporate three-dimensional tomographic complex refractive index data from Fourier-transform light scattering into a tailored finite-difference time-domain simulation space. This approach facilitates precise near-to-far-field transformations. The process yields complete full-angle scattering phase functions, crucial for particles like Plasmodium falciparum-parasitized erythrocytes, predominantly involved in forward scattering. The resultant scattering data exhibit an extreme dynamic range exceeding 100 dB at various incident angles of a He-Ne laser. These findings have the potential to develop point-of-care, cost-effective, and rapid malaria diagnostic tools, inspiring further clinical and research applications in microparticle scattering.\",\"PeriodicalId\":8969,\"journal\":{\"name\":\"Biomedical optics express\",\"volume\":\"14 1\",\"pages\":\"5238-5250\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical optics express\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1364/boe.528698\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/boe.528698","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

对微观物体进行精确的光学表征对于学术研究、产品开发和临床诊断至关重要。我们提出了一种获取微颗粒的完整、高动态范围、角度分辨光散射属性的方法,从而能够区分整体形态和详细内部结构的变化。这种方法通过计算辅助三维全图成像克服了以往在可观测散射角和信号动态范围方面的限制。对于人类红细胞等波长跨度达数十个波长的颗粒来说,这一进步意义重大,因为这些颗粒内部结构复杂,会产生微弱的侧向散射信号,这在历史上曾给测量工作带来挑战。我们的技术解决了光学侧向散射分析中的三大难题:观测角度范围有限、依赖简化的计算模型以及实验和计算评估中的低信噪比。我们将傅立叶变换光散射的三维层析复折射率数据纳入定制的有限差分时域模拟空间。这种方法有助于进行精确的近场到远场转换。这一过程产生了完整的全角散射相位函数,这对恶性疟原虫寄生红细胞等主要参与前向散射的颗粒至关重要。在氦氖激光器的不同入射角度下,所得到的散射数据显示出超过 100 dB 的极限动态范围。这些发现有望开发出成本效益高、快速的疟疾床旁诊断工具,激发微粒子散射的进一步临床和研究应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In silico full-angle high-dynamic range scattering of microscopic objects exploiting holotomography.
Accurate optical characterization of microscopic objects is crucial in academic research, product development, and clinical diagnosis. We present a method for obtaining full and high-dynamic range, angle-resolved light scattering attributes of microparticles, enabling distinction of variations in both overall morphology and detailed internal structures. This method overcomes previous limitations in observable scattering angles and dynamic range of signals through computationally assisted three-dimensional holotomography. This advancement is significant for particles spanning tens of wavelengths, such as human erythrocytes, which have historically posed measurement challenges due to faint side-scattering signals indicative of their complex interiors. Our technique addresses three key challenges in optical side-scattering analysis: limited observational angular range, reliance on simplified computational models, and low signal-to-noise ratios in both experimental and computational evaluations. We incorporate three-dimensional tomographic complex refractive index data from Fourier-transform light scattering into a tailored finite-difference time-domain simulation space. This approach facilitates precise near-to-far-field transformations. The process yields complete full-angle scattering phase functions, crucial for particles like Plasmodium falciparum-parasitized erythrocytes, predominantly involved in forward scattering. The resultant scattering data exhibit an extreme dynamic range exceeding 100 dB at various incident angles of a He-Ne laser. These findings have the potential to develop point-of-care, cost-effective, and rapid malaria diagnostic tools, inspiring further clinical and research applications in microparticle scattering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
期刊最新文献
Super resolution reconstruction of fluorescence microscopy images by a convolutional network with physical priors. Physics-guided deep learning-based real-time image reconstruction of Fourier-domain optical coherence tomography. On bench evaluation of intraocular lenses: performance of a commercial interferometer. Predictive coding compressive sensing optical coherence tomography hardware implementation. Development of silicone-based phantoms for biomedical optics from 400 to 1550 nm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1