通过文本提示进行生成式语义交流:延迟性能权衡

Mengmeng Ren, Li Qiao, Long Yang, Zhen Gao, Jian Chen, Mahdi Boloursaz Mashhadi, Pei Xiao, Rahim Tafazolli, Mehdi Bennis
{"title":"通过文本提示进行生成式语义交流:延迟性能权衡","authors":"Mengmeng Ren, Li Qiao, Long Yang, Zhen Gao, Jian Chen, Mahdi Boloursaz Mashhadi, Pei Xiao, Rahim Tafazolli, Mehdi Bennis","doi":"arxiv-2409.09715","DOIUrl":null,"url":null,"abstract":"This paper develops an edge-device collaborative Generative Semantic\nCommunications (Gen SemCom) framework leveraging pre-trained Multi-modal/Vision\nLanguage Models (M/VLMs) for ultra-low-rate semantic communication via textual\nprompts. The proposed framework optimizes the use of M/VLMs on the wireless\nedge/device to generate high-fidelity textual prompts through visual\ncaptioning/question answering, which are then transmitted over a wireless\nchannel for SemCom. Specifically, we develop a multi-user Gen SemCom framework\nusing pre-trained M/VLMs, and formulate a joint optimization problem of prompt\ngeneration offloading, communication and computation resource allocation to\nminimize the latency and maximize the resulting semantic quality. Due to the\nnonconvex nature of the problem with highly coupled discrete and continuous\nvariables, we decompose it as a two-level problem and propose a low-complexity\nswap/leaving/joining (SLJ)-based matching algorithm. Simulation results\ndemonstrate significant performance improvements over the conventional\nsemanticunaware/non-collaborative offloading benchmarks.","PeriodicalId":501082,"journal":{"name":"arXiv - MATH - Information Theory","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generative Semantic Communication via Textual Prompts: Latency Performance Tradeoffs\",\"authors\":\"Mengmeng Ren, Li Qiao, Long Yang, Zhen Gao, Jian Chen, Mahdi Boloursaz Mashhadi, Pei Xiao, Rahim Tafazolli, Mehdi Bennis\",\"doi\":\"arxiv-2409.09715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops an edge-device collaborative Generative Semantic\\nCommunications (Gen SemCom) framework leveraging pre-trained Multi-modal/Vision\\nLanguage Models (M/VLMs) for ultra-low-rate semantic communication via textual\\nprompts. The proposed framework optimizes the use of M/VLMs on the wireless\\nedge/device to generate high-fidelity textual prompts through visual\\ncaptioning/question answering, which are then transmitted over a wireless\\nchannel for SemCom. Specifically, we develop a multi-user Gen SemCom framework\\nusing pre-trained M/VLMs, and formulate a joint optimization problem of prompt\\ngeneration offloading, communication and computation resource allocation to\\nminimize the latency and maximize the resulting semantic quality. Due to the\\nnonconvex nature of the problem with highly coupled discrete and continuous\\nvariables, we decompose it as a two-level problem and propose a low-complexity\\nswap/leaving/joining (SLJ)-based matching algorithm. Simulation results\\ndemonstrate significant performance improvements over the conventional\\nsemanticunaware/non-collaborative offloading benchmarks.\",\"PeriodicalId\":501082,\"journal\":{\"name\":\"arXiv - MATH - Information Theory\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用预先训练好的多模态/视觉语言模型(M/VLMs)开发了一种边缘设备协作式生成语义通信(Gen SemCom)框架,通过文本提示进行超低速语义通信。所提出的框架优化了无线边缘/设备上 M/VLM 的使用,通过可视化字幕/问题解答生成高保真文本提示,然后通过无线信道传输用于 SemCom。具体来说,我们利用预先训练好的 M/VLM 开发了一个多用户 Gen SemCom 框架,并提出了一个提示生成卸载、通信和计算资源分配的联合优化问题,以最小化延迟并最大化语义质量。由于该问题具有离散变量和连续变量高度耦合的非凸性质,我们将其分解为一个两级问题,并提出了一种基于低复杂度交换/离开/连接(SLJ)的匹配算法。仿真结果表明,与传统的语义未感知/非协作卸载基准相比,该算法的性能有了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generative Semantic Communication via Textual Prompts: Latency Performance Tradeoffs
This paper develops an edge-device collaborative Generative Semantic Communications (Gen SemCom) framework leveraging pre-trained Multi-modal/Vision Language Models (M/VLMs) for ultra-low-rate semantic communication via textual prompts. The proposed framework optimizes the use of M/VLMs on the wireless edge/device to generate high-fidelity textual prompts through visual captioning/question answering, which are then transmitted over a wireless channel for SemCom. Specifically, we develop a multi-user Gen SemCom framework using pre-trained M/VLMs, and formulate a joint optimization problem of prompt generation offloading, communication and computation resource allocation to minimize the latency and maximize the resulting semantic quality. Due to the nonconvex nature of the problem with highly coupled discrete and continuous variables, we decompose it as a two-level problem and propose a low-complexity swap/leaving/joining (SLJ)-based matching algorithm. Simulation results demonstrate significant performance improvements over the conventional semanticunaware/non-collaborative offloading benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fluid Antenna-enabled Integrated Sensing, Communication, and Computing Systems On the second-order zero differential properties of several classes of power functions over finite fields Synchronizable hybrid subsystem codes Decoding Algorithm Correcting Single-Insertion Plus Single-Deletion for Non-binary Quantum Codes A Symbol-Pair Decoder for CSS Codes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1