人类神经有机体微观生理系统展示了基本学习和记忆所需的基石

Dowlette-Mary Alam El Din, Leah Moenkemoeller, Alon Loeffler, Forough Habibollahi, Jack Schenkman, Amitav Mitra, Tjitse van der Molen, Lixuan Ding, Jason Laird, Maren Schenke, Erik Johnson, Brett Kagan, Thomas Hartung, Lena Smirnova
{"title":"人类神经有机体微观生理系统展示了基本学习和记忆所需的基石","authors":"Dowlette-Mary Alam El Din, Leah Moenkemoeller, Alon Loeffler, Forough Habibollahi, Jack Schenkman, Amitav Mitra, Tjitse van der Molen, Lixuan Ding, Jason Laird, Maren Schenke, Erik Johnson, Brett Kagan, Thomas Hartung, Lena Smirnova","doi":"10.1101/2024.09.17.613333","DOIUrl":null,"url":null,"abstract":"Brain Microphysiological Systems including neural organoids derived from human induced pluripotent stem cells offer a unique lens to study the intricate workings of the human brain. This paper investigates the foundational elements of learning and memory in neural organoids, also known as Organoid Intelligence by quantifying immediate early gene expression, synaptic plasticity, neuronal network dynamics, and criticality to demonstrate the utility of these organoids in basic science research. Neural organoids showed synapse formation, glutamatergic and GABAergic receptor expression, immediate early gene expression basally and evoked, functional connectivity, criticality, and synaptic plasticity in response to theta-burst stimulation. In addition, pharmacological interventions on GABAergic and glutamatergic receptors, and input specific theta-burst stimulation further shed light on the capacity of neural organoids to mirror synaptic modulation and short-term potentiation, demonstrating their potential as tools for studying neurophysiological and neurological processes and informing therapeutic strategies for diseases.","PeriodicalId":501581,"journal":{"name":"bioRxiv - Neuroscience","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human Neural Organoid Microphysiological Systems Show the Building Blocks Necessary for Basic Learning and Memory\",\"authors\":\"Dowlette-Mary Alam El Din, Leah Moenkemoeller, Alon Loeffler, Forough Habibollahi, Jack Schenkman, Amitav Mitra, Tjitse van der Molen, Lixuan Ding, Jason Laird, Maren Schenke, Erik Johnson, Brett Kagan, Thomas Hartung, Lena Smirnova\",\"doi\":\"10.1101/2024.09.17.613333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain Microphysiological Systems including neural organoids derived from human induced pluripotent stem cells offer a unique lens to study the intricate workings of the human brain. This paper investigates the foundational elements of learning and memory in neural organoids, also known as Organoid Intelligence by quantifying immediate early gene expression, synaptic plasticity, neuronal network dynamics, and criticality to demonstrate the utility of these organoids in basic science research. Neural organoids showed synapse formation, glutamatergic and GABAergic receptor expression, immediate early gene expression basally and evoked, functional connectivity, criticality, and synaptic plasticity in response to theta-burst stimulation. In addition, pharmacological interventions on GABAergic and glutamatergic receptors, and input specific theta-burst stimulation further shed light on the capacity of neural organoids to mirror synaptic modulation and short-term potentiation, demonstrating their potential as tools for studying neurophysiological and neurological processes and informing therapeutic strategies for diseases.\",\"PeriodicalId\":501581,\"journal\":{\"name\":\"bioRxiv - Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.17.613333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.17.613333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脑微生理系统(包括从人类诱导多能干细胞中提取的神经有机体)为研究人类大脑的复杂运作提供了一个独特的视角。本文通过量化即时早期基因表达、突触可塑性、神经元网络动态和临界性,研究了神经器官(又称器官智能)中学习和记忆的基本要素,以证明这些器官在基础科学研究中的实用性。神经器官模型显示了突触的形成、谷氨酸能和 GABA 能受体的表达、基础和诱发的即刻早期基因表达、功能连接性、临界性,以及θ-脉冲刺激下的突触可塑性。此外,对GABA能受体和谷氨酸能受体的药物干预,以及输入特定的θ-脉冲刺激,进一步揭示了神经器官组织反映突触调节和短期延时的能力,显示了它们作为研究神经生理和神经过程的工具以及为疾病治疗策略提供信息的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human Neural Organoid Microphysiological Systems Show the Building Blocks Necessary for Basic Learning and Memory
Brain Microphysiological Systems including neural organoids derived from human induced pluripotent stem cells offer a unique lens to study the intricate workings of the human brain. This paper investigates the foundational elements of learning and memory in neural organoids, also known as Organoid Intelligence by quantifying immediate early gene expression, synaptic plasticity, neuronal network dynamics, and criticality to demonstrate the utility of these organoids in basic science research. Neural organoids showed synapse formation, glutamatergic and GABAergic receptor expression, immediate early gene expression basally and evoked, functional connectivity, criticality, and synaptic plasticity in response to theta-burst stimulation. In addition, pharmacological interventions on GABAergic and glutamatergic receptors, and input specific theta-burst stimulation further shed light on the capacity of neural organoids to mirror synaptic modulation and short-term potentiation, demonstrating their potential as tools for studying neurophysiological and neurological processes and informing therapeutic strategies for diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FUS controls muscle differentiation and structure through LLPS mediated recruitment of MEF2 and ETV5 Neural basis of collective social behavior during environmental challenge Contrasting Cognitive, Behavioral, and Physiological Responses to Breathwork vs. Naturalistic Stimuli in Reflective Chamber and VR Headset Environments Alpha-synuclein preformed fibril-induced aggregation and dopaminergic cell death in cathepsin D overexpression and ZKSCAN3 knockout mice Histamine interferes with the early visual processing in mice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1