用于预测粉末床熔融快速成型制造过程中熔池附近应力和应变演变的改进型热力学模型

IF 3.7 2区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Computational Mechanics Pub Date : 2024-09-19 DOI:10.1007/s00466-024-02545-6
Pegah Pourabdollah, Farzaneh Farhang-Mehr, Steve Cockcroft, Daan Maijer, Asmita Chakraborty
{"title":"用于预测粉末床熔融快速成型制造过程中熔池附近应力和应变演变的改进型热力学模型","authors":"Pegah Pourabdollah, Farzaneh Farhang-Mehr, Steve Cockcroft, Daan Maijer, Asmita Chakraborty","doi":"10.1007/s00466-024-02545-6","DOIUrl":null,"url":null,"abstract":"<p>An improved thermomechanical analysis of the evolution of the stress and plastic strain fields near the melt pool has been developed for the Electron Beam Powder Bed Fusion (PBF-EB) process. The analysis focuses on a sub-domain extracted from a larger component, which includes the sequential addition and melt/consolidation of 4 powder layers on a solid substrate. The material’s behavior was described as a function of temperature and material form (powder, semi-consolidated, bulk, and liquid). The yield stress was described as a function of temperature and strain rate to capture key phenomena related to plastic strain accumulation. The thermal component of the model has been validated using melt pool geometry. The importance of the strain rate-dependent yield stress and substrate temperature were identified. Yielding was predicted to occur in the solid directly below the melt pool in association with rapid heating and, to a lesser extent, during cooling in the wake of the melt pool as it solidifies. A linear regression model was proposed, linking the developed compressive plastic strain to substrate temperature for a single set of beam parameters. The model was validated by comparing the substrate temperatures needed to produce the same plastic strains used to predict the distortion in a component with a ledge-type feature fabricated in a commercial PBF-EB machine. It is proposed that the linear regression model may be used to estimate the strain variation in large components as a function of the varying thermal field in the newly consolidated material (the substrate) during component fabrication.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"212 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved thermomechanical model for the prediction of stress and strain evolution in proximity to the melt pool in powder bed fusion additive manufacturing\",\"authors\":\"Pegah Pourabdollah, Farzaneh Farhang-Mehr, Steve Cockcroft, Daan Maijer, Asmita Chakraborty\",\"doi\":\"10.1007/s00466-024-02545-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An improved thermomechanical analysis of the evolution of the stress and plastic strain fields near the melt pool has been developed for the Electron Beam Powder Bed Fusion (PBF-EB) process. The analysis focuses on a sub-domain extracted from a larger component, which includes the sequential addition and melt/consolidation of 4 powder layers on a solid substrate. The material’s behavior was described as a function of temperature and material form (powder, semi-consolidated, bulk, and liquid). The yield stress was described as a function of temperature and strain rate to capture key phenomena related to plastic strain accumulation. The thermal component of the model has been validated using melt pool geometry. The importance of the strain rate-dependent yield stress and substrate temperature were identified. Yielding was predicted to occur in the solid directly below the melt pool in association with rapid heating and, to a lesser extent, during cooling in the wake of the melt pool as it solidifies. A linear regression model was proposed, linking the developed compressive plastic strain to substrate temperature for a single set of beam parameters. The model was validated by comparing the substrate temperatures needed to produce the same plastic strains used to predict the distortion in a component with a ledge-type feature fabricated in a commercial PBF-EB machine. It is proposed that the linear regression model may be used to estimate the strain variation in large components as a function of the varying thermal field in the newly consolidated material (the substrate) during component fabrication.</p>\",\"PeriodicalId\":55248,\"journal\":{\"name\":\"Computational Mechanics\",\"volume\":\"212 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00466-024-02545-6\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00466-024-02545-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

针对电子束粉末床融合(PBF-EB)工艺,开发了一种改进的热力学分析方法,用于分析熔池附近应力场和塑性应变场的演变。该分析侧重于从一个较大组件中提取的子域,其中包括在固体基底上 4 层粉末的顺序添加和熔化/凝固。材料行为被描述为温度和材料形态(粉末、半固态、块状和液态)的函数。屈服应力被描述为温度和应变速率的函数,以捕捉与塑性应变累积有关的关键现象。该模型的热成分已通过熔池几何验证。确定了屈服应力和基底温度与应变速率相关的重要性。预测屈服发生在熔池正下方的固体中,与快速加热有关,其次是在熔池凝固后的冷却过程中。提出了一个线性回归模型,将单组梁参数下产生的压缩塑性应变与基体温度联系起来。通过比较产生相同塑性应变所需的基体温度,对模型进行了验证,这些塑性应变用于预测在商用 PBF-EB 机器上制造的具有凸台特征的部件的变形。建议线性回归模型可用于估算大型部件的应变变化,作为部件制造过程中新固结材料(基底)中不同热场的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An improved thermomechanical model for the prediction of stress and strain evolution in proximity to the melt pool in powder bed fusion additive manufacturing

An improved thermomechanical analysis of the evolution of the stress and plastic strain fields near the melt pool has been developed for the Electron Beam Powder Bed Fusion (PBF-EB) process. The analysis focuses on a sub-domain extracted from a larger component, which includes the sequential addition and melt/consolidation of 4 powder layers on a solid substrate. The material’s behavior was described as a function of temperature and material form (powder, semi-consolidated, bulk, and liquid). The yield stress was described as a function of temperature and strain rate to capture key phenomena related to plastic strain accumulation. The thermal component of the model has been validated using melt pool geometry. The importance of the strain rate-dependent yield stress and substrate temperature were identified. Yielding was predicted to occur in the solid directly below the melt pool in association with rapid heating and, to a lesser extent, during cooling in the wake of the melt pool as it solidifies. A linear regression model was proposed, linking the developed compressive plastic strain to substrate temperature for a single set of beam parameters. The model was validated by comparing the substrate temperatures needed to produce the same plastic strains used to predict the distortion in a component with a ledge-type feature fabricated in a commercial PBF-EB machine. It is proposed that the linear regression model may be used to estimate the strain variation in large components as a function of the varying thermal field in the newly consolidated material (the substrate) during component fabrication.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Mechanics
Computational Mechanics 物理-力学
CiteScore
7.80
自引率
12.20%
发文量
122
审稿时长
3.4 months
期刊介绍: The journal reports original research of scholarly value in computational engineering and sciences. It focuses on areas that involve and enrich the application of mechanics, mathematics and numerical methods. It covers new methods and computationally-challenging technologies. Areas covered include method development in solid, fluid mechanics and materials simulations with application to biomechanics and mechanics in medicine, multiphysics, fracture mechanics, multiscale mechanics, particle and meshfree methods. Additionally, manuscripts including simulation and method development of synthesis of material systems are encouraged. Manuscripts reporting results obtained with established methods, unless they involve challenging computations, and manuscripts that report computations using commercial software packages are not encouraged.
期刊最新文献
An improved thermomechanical model for the prediction of stress and strain evolution in proximity to the melt pool in powder bed fusion additive manufacturing A consistent discretization via the finite radon transform for FFT-based computational micromechanics On the use of scaled boundary shape functions in adaptive phase field modeling of brittle fracture Efficient and accurate analysis of locally resonant acoustic metamaterial plates using computational homogenization Modeling cellular self-organization in strain-stiffening hydrogels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1