通过eks软件包中的核平滑方法在R语言中实现整洁数据和地理空间数据的统计可视化

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Computational Statistics Pub Date : 2024-09-14 DOI:10.1007/s00180-024-01543-9
Tarn Duong
{"title":"通过eks软件包中的核平滑方法在R语言中实现整洁数据和地理空间数据的统计可视化","authors":"Tarn Duong","doi":"10.1007/s00180-024-01543-9","DOIUrl":null,"url":null,"abstract":"<p>Kernel smoothers are essential tools for data analysis due to their ability to convey complex statistical information with concise graphical visualisations. Their inclusion in the base distribution and in the many user-contributed add-on packages of the <span>R</span> statistical analysis environment caters well to many practitioners. Though there remain some important gaps for specialised data, most notably for tidy and geospatial data. The proposed <span>eks</span> package fills in these gaps. In addition to kernel density estimation, this package also caters for more complex data analysis situations, such as density derivative estimation, density-based classification (supervised learning) and mean shift clustering (unsupervised learning). We illustrate with experimental data how to obtain and to interpret the statistical visualisations for these kernel smoothing methods.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"119 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical visualisation of tidy and geospatial data in R via kernel smoothing methods in the eks package\",\"authors\":\"Tarn Duong\",\"doi\":\"10.1007/s00180-024-01543-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Kernel smoothers are essential tools for data analysis due to their ability to convey complex statistical information with concise graphical visualisations. Their inclusion in the base distribution and in the many user-contributed add-on packages of the <span>R</span> statistical analysis environment caters well to many practitioners. Though there remain some important gaps for specialised data, most notably for tidy and geospatial data. The proposed <span>eks</span> package fills in these gaps. In addition to kernel density estimation, this package also caters for more complex data analysis situations, such as density derivative estimation, density-based classification (supervised learning) and mean shift clustering (unsupervised learning). We illustrate with experimental data how to obtain and to interpret the statistical visualisations for these kernel smoothing methods.</p>\",\"PeriodicalId\":55223,\"journal\":{\"name\":\"Computational Statistics\",\"volume\":\"119 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00180-024-01543-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01543-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

核平滑器能以简洁的图形直观地表达复杂的统计信息,是数据分析的重要工具。R 统计分析环境的基本发行版和许多用户贡献的附加软件包中都包含了这些工具,很好地满足了许多从业人员的需求。不过,对于专业数据,尤其是整洁数据和地理空间数据,仍然存在一些重要的空白。拟议的 eks 软件包填补了这些空白。除核密度估计外,该软件包还可用于更复杂的数据分析情况,如密度导数估计、基于密度的分类(监督学习)和均值移动聚类(无监督学习)。我们将用实验数据说明如何获得和解释这些核平滑方法的统计可视化效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Statistical visualisation of tidy and geospatial data in R via kernel smoothing methods in the eks package

Kernel smoothers are essential tools for data analysis due to their ability to convey complex statistical information with concise graphical visualisations. Their inclusion in the base distribution and in the many user-contributed add-on packages of the R statistical analysis environment caters well to many practitioners. Though there remain some important gaps for specialised data, most notably for tidy and geospatial data. The proposed eks package fills in these gaps. In addition to kernel density estimation, this package also caters for more complex data analysis situations, such as density derivative estimation, density-based classification (supervised learning) and mean shift clustering (unsupervised learning). We illustrate with experimental data how to obtain and to interpret the statistical visualisations for these kernel smoothing methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Statistics
Computational Statistics 数学-统计学与概率论
CiteScore
2.90
自引率
0.00%
发文量
122
审稿时长
>12 weeks
期刊介绍: Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.
期刊最新文献
Bayes estimation of ratio of scale-like parameters for inverse Gaussian distributions and applications to classification Multivariate approaches to investigate the home and away behavior of football teams playing football matches Kendall correlations and radar charts to include goals for and goals against in soccer rankings Bayesian adaptive lasso quantile regression with non-ignorable missing responses Statistical visualisation of tidy and geospatial data in R via kernel smoothing methods in the eks package
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1