Ran Tao , Bin Li , Yufeng Wu , Wei Zhang , Lijuan Zhao , Haoran Yuan , Jing Gu , Yong Chen
{"title":"废旧液晶显示屏主要有机成分偏光膜热解特性与机理的实验和密度泛函理论计算","authors":"Ran Tao , Bin Li , Yufeng Wu , Wei Zhang , Lijuan Zhao , Haoran Yuan , Jing Gu , Yong Chen","doi":"10.1016/j.jaap.2024.106769","DOIUrl":null,"url":null,"abstract":"<div><p>Waste liquid crystal display (LCD) panels contain a significant amount of rare precious metal In, and In extraction is also the industry's driving force There are currently many reports on the recovery of In from waste LCD panels, but there are not many on the recovery of organic components from waste LCD panels, particularly polarizing film recovery. Pyrolysis is one of the most promising technologies for organic waste recycling. This work utilized TG, TG-FTIR, and Py-GC/MS to examine the pyrolysis properties and product distribution of the polarizing film. Additionally, a range of kinetic analysis methods and density functional theory calculation were utilized to examine the pyrolysis kinetics and mechanism of the polarizing film. Polarizing film are mainly composed of cellulose triacetate (CTA), triphenyl phosphate (TPHP), polyvinyl alcohol (PVA) and polyacrylate. The results showed that CTA first breaks the glycosidic bond through a synergistic reaction to form an active CTA with a low degree of polymerization, and then forms small molecule compounds such as glucan triacetate analog, methylglyoxal, and allyl benzoate, among others, through free radical reactions. PVA first forms long-chain olefins through a dehydration process, and then short-chain olefins by a free radical reaction. TPHP may merely undergo melting and evaporation rather than undergoing a chemical reaction. Polyacrylate generates esters and aldehydes mainly through free radical reactions. This study provides a theoretical foundation and comprehensive reference for the pyrolysis and recycling of waste LCD panels.</p></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"183 ","pages":"Article 106769"},"PeriodicalIF":5.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and density functional theory calculations on the pyrolysis characteristics and mechanism of polarizing film, the main organic component of waste liquid crystal display panels\",\"authors\":\"Ran Tao , Bin Li , Yufeng Wu , Wei Zhang , Lijuan Zhao , Haoran Yuan , Jing Gu , Yong Chen\",\"doi\":\"10.1016/j.jaap.2024.106769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Waste liquid crystal display (LCD) panels contain a significant amount of rare precious metal In, and In extraction is also the industry's driving force There are currently many reports on the recovery of In from waste LCD panels, but there are not many on the recovery of organic components from waste LCD panels, particularly polarizing film recovery. Pyrolysis is one of the most promising technologies for organic waste recycling. This work utilized TG, TG-FTIR, and Py-GC/MS to examine the pyrolysis properties and product distribution of the polarizing film. Additionally, a range of kinetic analysis methods and density functional theory calculation were utilized to examine the pyrolysis kinetics and mechanism of the polarizing film. Polarizing film are mainly composed of cellulose triacetate (CTA), triphenyl phosphate (TPHP), polyvinyl alcohol (PVA) and polyacrylate. The results showed that CTA first breaks the glycosidic bond through a synergistic reaction to form an active CTA with a low degree of polymerization, and then forms small molecule compounds such as glucan triacetate analog, methylglyoxal, and allyl benzoate, among others, through free radical reactions. PVA first forms long-chain olefins through a dehydration process, and then short-chain olefins by a free radical reaction. TPHP may merely undergo melting and evaporation rather than undergoing a chemical reaction. Polyacrylate generates esters and aldehydes mainly through free radical reactions. This study provides a theoretical foundation and comprehensive reference for the pyrolysis and recycling of waste LCD panels.</p></div>\",\"PeriodicalId\":345,\"journal\":{\"name\":\"Journal of Analytical and Applied Pyrolysis\",\"volume\":\"183 \",\"pages\":\"Article 106769\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical and Applied Pyrolysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165237024004248\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical and Applied Pyrolysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165237024004248","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Experimental and density functional theory calculations on the pyrolysis characteristics and mechanism of polarizing film, the main organic component of waste liquid crystal display panels
Waste liquid crystal display (LCD) panels contain a significant amount of rare precious metal In, and In extraction is also the industry's driving force There are currently many reports on the recovery of In from waste LCD panels, but there are not many on the recovery of organic components from waste LCD panels, particularly polarizing film recovery. Pyrolysis is one of the most promising technologies for organic waste recycling. This work utilized TG, TG-FTIR, and Py-GC/MS to examine the pyrolysis properties and product distribution of the polarizing film. Additionally, a range of kinetic analysis methods and density functional theory calculation were utilized to examine the pyrolysis kinetics and mechanism of the polarizing film. Polarizing film are mainly composed of cellulose triacetate (CTA), triphenyl phosphate (TPHP), polyvinyl alcohol (PVA) and polyacrylate. The results showed that CTA first breaks the glycosidic bond through a synergistic reaction to form an active CTA with a low degree of polymerization, and then forms small molecule compounds such as glucan triacetate analog, methylglyoxal, and allyl benzoate, among others, through free radical reactions. PVA first forms long-chain olefins through a dehydration process, and then short-chain olefins by a free radical reaction. TPHP may merely undergo melting and evaporation rather than undergoing a chemical reaction. Polyacrylate generates esters and aldehydes mainly through free radical reactions. This study provides a theoretical foundation and comprehensive reference for the pyrolysis and recycling of waste LCD panels.
期刊介绍:
The Journal of Analytical and Applied Pyrolysis (JAAP) is devoted to the publication of papers dealing with innovative applications of pyrolysis processes, the characterization of products related to pyrolysis reactions, and investigations of reaction mechanism. To be considered by JAAP, a manuscript should present significant progress in these topics. The novelty must be satisfactorily argued in the cover letter. A manuscript with a cover letter to the editor not addressing the novelty is likely to be rejected without review.