Ingri Julieth Mancilla Corzo , Jessica Heline Lopes da Fonseca , Victor Ferman , Diego Noé Rodríguez Sánchez , Alexandre Leite Rodrigues de Oliveira , Marcos Akira d'Ávila
{"title":"优化生物材料墨水:羧甲基纤维素-皂石纳米复合水凝胶和牙髓干细胞生物打印的可打印性研究","authors":"Ingri Julieth Mancilla Corzo , Jessica Heline Lopes da Fonseca , Victor Ferman , Diego Noé Rodríguez Sánchez , Alexandre Leite Rodrigues de Oliveira , Marcos Akira d'Ávila","doi":"10.1016/j.bprint.2024.e00358","DOIUrl":null,"url":null,"abstract":"<div><p>Tissue engineering approaches require biocompatible materials with precise pre-designed geometry, shape fidelity, and promote cellular functions. Addressing these requirements, our study focused on developing an optimized bioink formulation using carboxymethyl cellulose (CMC) and Laponite hydrogels tailored for extrusion-based three-dimensional bioprinting. To this, we investigated the rheological properties and filament behavior before and during printing. As Laponite concentration increased in CMC solutions, it improved shear-thinning behavior, viscosity, and storage modulus, resulting in well-defined filament characteristics with lower diffusion rates, excellent shape fidelity, and robust printability. Thus, we achieved a suitable biomaterial ink formulation with concentrations of 1 wt% of CMC and 4 wt% of Laponite (1C4L). Subsequently, a statistical analysis guided us to select the optimal parameters for large-scale construct printing: a nozzle speed of 5 mm/s, a print distance of 0.41 mm, and an extrusion multiplier of 1.35. After that, we enhanced the structural integrity of printed hydrogels through ionic crosslinking with calcium chloride (CaCl<sub>2</sub>) and citric acid (CA), revealing higher-strength hydrogels at higher concentrations of CaCl<sub>2</sub>. Finally, we have confirmed the groundbreaking potential of our bioink by integrating dental pulp mesenchymal stem cells (DPSC) into the 1C4L ink. Our bioprinted constructs showed optimized swelling, non-toxic effects, and retained excellent shape fidelity, crucial for creating anatomically accurate tissues. Our findings provide crucial insights linking the rheological analysis, the bioprinting process, and the biological properties of hydrogels, paving the way for their use for tissue engineering and other biomedical applications.</p></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":"43 ","pages":"Article e00358"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing biomaterial inks: A study on the printability of Carboxymethyl cellulose-Laponite nanocomposite hydrogels and dental pulp stem cells bioprinting\",\"authors\":\"Ingri Julieth Mancilla Corzo , Jessica Heline Lopes da Fonseca , Victor Ferman , Diego Noé Rodríguez Sánchez , Alexandre Leite Rodrigues de Oliveira , Marcos Akira d'Ávila\",\"doi\":\"10.1016/j.bprint.2024.e00358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tissue engineering approaches require biocompatible materials with precise pre-designed geometry, shape fidelity, and promote cellular functions. Addressing these requirements, our study focused on developing an optimized bioink formulation using carboxymethyl cellulose (CMC) and Laponite hydrogels tailored for extrusion-based three-dimensional bioprinting. To this, we investigated the rheological properties and filament behavior before and during printing. As Laponite concentration increased in CMC solutions, it improved shear-thinning behavior, viscosity, and storage modulus, resulting in well-defined filament characteristics with lower diffusion rates, excellent shape fidelity, and robust printability. Thus, we achieved a suitable biomaterial ink formulation with concentrations of 1 wt% of CMC and 4 wt% of Laponite (1C4L). Subsequently, a statistical analysis guided us to select the optimal parameters for large-scale construct printing: a nozzle speed of 5 mm/s, a print distance of 0.41 mm, and an extrusion multiplier of 1.35. After that, we enhanced the structural integrity of printed hydrogels through ionic crosslinking with calcium chloride (CaCl<sub>2</sub>) and citric acid (CA), revealing higher-strength hydrogels at higher concentrations of CaCl<sub>2</sub>. Finally, we have confirmed the groundbreaking potential of our bioink by integrating dental pulp mesenchymal stem cells (DPSC) into the 1C4L ink. Our bioprinted constructs showed optimized swelling, non-toxic effects, and retained excellent shape fidelity, crucial for creating anatomically accurate tissues. Our findings provide crucial insights linking the rheological analysis, the bioprinting process, and the biological properties of hydrogels, paving the way for their use for tissue engineering and other biomedical applications.</p></div>\",\"PeriodicalId\":37770,\"journal\":{\"name\":\"Bioprinting\",\"volume\":\"43 \",\"pages\":\"Article e00358\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprinting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405886624000307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprinting","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405886624000307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Optimizing biomaterial inks: A study on the printability of Carboxymethyl cellulose-Laponite nanocomposite hydrogels and dental pulp stem cells bioprinting
Tissue engineering approaches require biocompatible materials with precise pre-designed geometry, shape fidelity, and promote cellular functions. Addressing these requirements, our study focused on developing an optimized bioink formulation using carboxymethyl cellulose (CMC) and Laponite hydrogels tailored for extrusion-based three-dimensional bioprinting. To this, we investigated the rheological properties and filament behavior before and during printing. As Laponite concentration increased in CMC solutions, it improved shear-thinning behavior, viscosity, and storage modulus, resulting in well-defined filament characteristics with lower diffusion rates, excellent shape fidelity, and robust printability. Thus, we achieved a suitable biomaterial ink formulation with concentrations of 1 wt% of CMC and 4 wt% of Laponite (1C4L). Subsequently, a statistical analysis guided us to select the optimal parameters for large-scale construct printing: a nozzle speed of 5 mm/s, a print distance of 0.41 mm, and an extrusion multiplier of 1.35. After that, we enhanced the structural integrity of printed hydrogels through ionic crosslinking with calcium chloride (CaCl2) and citric acid (CA), revealing higher-strength hydrogels at higher concentrations of CaCl2. Finally, we have confirmed the groundbreaking potential of our bioink by integrating dental pulp mesenchymal stem cells (DPSC) into the 1C4L ink. Our bioprinted constructs showed optimized swelling, non-toxic effects, and retained excellent shape fidelity, crucial for creating anatomically accurate tissues. Our findings provide crucial insights linking the rheological analysis, the bioprinting process, and the biological properties of hydrogels, paving the way for their use for tissue engineering and other biomedical applications.
期刊介绍:
Bioprinting is a broad-spectrum, multidisciplinary journal that covers all aspects of 3D fabrication technology involving biological tissues, organs and cells for medical and biotechnology applications. Topics covered include nanomaterials, biomaterials, scaffolds, 3D printing technology, imaging and CAD/CAM software and hardware, post-printing bioreactor maturation, cell and biological factor patterning, biofabrication, tissue engineering and other applications of 3D bioprinting technology. Bioprinting publishes research reports describing novel results with high clinical significance in all areas of 3D bioprinting research. Bioprinting issues contain a wide variety of review and analysis articles covering topics relevant to 3D bioprinting ranging from basic biological, material and technical advances to pre-clinical and clinical applications of 3D bioprinting.