{"title":"氢氧化钴纳米片实现了没食子酸的比率荧光检测","authors":"Chunlei Yang, Guiju Xu, Chenghao Hou, Hongwei Zhang","doi":"10.1016/j.fochx.2024.101843","DOIUrl":null,"url":null,"abstract":"<div><p>Gallic acid (GA) is widely used in beverages, food, and other fields as antioxidant. However, GA is slightly toxic and the accumulation of GA is harmful to human body. Therefore, it's vital to develop simple and sensitive detection methods for GA. In this work, a novel ratiometric fluorescent nanoprobe (named CoOOH/OPD/SiNPs) for the GA detection in different foods was designed and prepared. The fluorescence of silicon nanoparticles (SiNPs) at 443 nm would be quenched by cobalt oxyhydroxide (CoOOH) nanoflakes. <em>o</em>-phenylenediamine (OPD) would be oxidized to 2,3-diaminophenazine (DAP) by CoOOH nanoflakes that have peroxidase-like activity, which produces a new fluorescent peak at 556 nm. Meanwhile, SiNPs' fluorescence would be quenched through DAP due to inner filter effect (IFE). With the addition of GA, the reductive decomposition of CoOOH decreased DAP level, causing IFE being restrained. The concentration of GA indicates an excellent linear relationship with fluorescence ratio (F<sub>443</sub>/F<sub>556</sub>) in range of 0.4–12 μM (R<sup>2</sup> = 0.9937) with 0.16 μM detection limit. This nanoprobe is applied to GA detection in water, tea leaves, fruits and nut fruits, which would be expected to act as a portable device for complex substances analysis.</p></div>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"24 ","pages":"Article 101843"},"PeriodicalIF":6.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590157524007314/pdfft?md5=8784e8c66add3d477732c13ec6a6baaa&pid=1-s2.0-S2590157524007314-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Cobalt oxyhydroxide nanoflakes enable ratiometric fluorescent assay of gallic acid\",\"authors\":\"Chunlei Yang, Guiju Xu, Chenghao Hou, Hongwei Zhang\",\"doi\":\"10.1016/j.fochx.2024.101843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Gallic acid (GA) is widely used in beverages, food, and other fields as antioxidant. However, GA is slightly toxic and the accumulation of GA is harmful to human body. Therefore, it's vital to develop simple and sensitive detection methods for GA. In this work, a novel ratiometric fluorescent nanoprobe (named CoOOH/OPD/SiNPs) for the GA detection in different foods was designed and prepared. The fluorescence of silicon nanoparticles (SiNPs) at 443 nm would be quenched by cobalt oxyhydroxide (CoOOH) nanoflakes. <em>o</em>-phenylenediamine (OPD) would be oxidized to 2,3-diaminophenazine (DAP) by CoOOH nanoflakes that have peroxidase-like activity, which produces a new fluorescent peak at 556 nm. Meanwhile, SiNPs' fluorescence would be quenched through DAP due to inner filter effect (IFE). With the addition of GA, the reductive decomposition of CoOOH decreased DAP level, causing IFE being restrained. The concentration of GA indicates an excellent linear relationship with fluorescence ratio (F<sub>443</sub>/F<sub>556</sub>) in range of 0.4–12 μM (R<sup>2</sup> = 0.9937) with 0.16 μM detection limit. This nanoprobe is applied to GA detection in water, tea leaves, fruits and nut fruits, which would be expected to act as a portable device for complex substances analysis.</p></div>\",\"PeriodicalId\":12334,\"journal\":{\"name\":\"Food Chemistry: X\",\"volume\":\"24 \",\"pages\":\"Article 101843\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590157524007314/pdfft?md5=8784e8c66add3d477732c13ec6a6baaa&pid=1-s2.0-S2590157524007314-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry: X\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590157524007314\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590157524007314","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Cobalt oxyhydroxide nanoflakes enable ratiometric fluorescent assay of gallic acid
Gallic acid (GA) is widely used in beverages, food, and other fields as antioxidant. However, GA is slightly toxic and the accumulation of GA is harmful to human body. Therefore, it's vital to develop simple and sensitive detection methods for GA. In this work, a novel ratiometric fluorescent nanoprobe (named CoOOH/OPD/SiNPs) for the GA detection in different foods was designed and prepared. The fluorescence of silicon nanoparticles (SiNPs) at 443 nm would be quenched by cobalt oxyhydroxide (CoOOH) nanoflakes. o-phenylenediamine (OPD) would be oxidized to 2,3-diaminophenazine (DAP) by CoOOH nanoflakes that have peroxidase-like activity, which produces a new fluorescent peak at 556 nm. Meanwhile, SiNPs' fluorescence would be quenched through DAP due to inner filter effect (IFE). With the addition of GA, the reductive decomposition of CoOOH decreased DAP level, causing IFE being restrained. The concentration of GA indicates an excellent linear relationship with fluorescence ratio (F443/F556) in range of 0.4–12 μM (R2 = 0.9937) with 0.16 μM detection limit. This nanoprobe is applied to GA detection in water, tea leaves, fruits and nut fruits, which would be expected to act as a portable device for complex substances analysis.
期刊介绍:
Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.