成纤维细胞生长因子 21 通过调节胆汁酸-肠道微生物群轴提高Ⅱ型糖尿病小鼠的胰岛素敏感性

IF 7.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Free Radical Biology and Medicine Pub Date : 2024-09-15 DOI:10.1016/j.freeradbiomed.2024.09.017
{"title":"成纤维细胞生长因子 21 通过调节胆汁酸-肠道微生物群轴提高Ⅱ型糖尿病小鼠的胰岛素敏感性","authors":"","doi":"10.1016/j.freeradbiomed.2024.09.017","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Fibroblast growth factor 21 (FGF21) is an important regulator of glycolipid metabolism. However, whether the gut microbiota is related to the anti-diabetic and obesity effects of FGF21 remains unclear.</p></div><div><h3>Methods</h3><p>Our research used KO/KO db/db male mice and streptozotocin (STZ)-induced to simulate the construction of two type II diabetic mellitus (T2DM) models, and detected impaired glucose tolerance in the model by using the ipGTT and ITT assays, and collected feces from the model mice for sequencing of the intestinal flora and the content of short-chain fatty acids. H&E staining was used to detect changes in intestinal tissue, the serum levels of LPS and GLP-1 were detected by ELISA.</p></div><div><h3>Results</h3><p>In this study, we found that FGF21 significantly improved insulin sensitivity, attenuated intestinal lesions, and decreased serum lipopolysaccharide (LPS) concentrations in T2DM mice. Moreover, FGF21 reshaped the gut microbiota and altered their metabolic pathways in T2DM mice, promoting the production of short-chain fatty acids (SCFAs) and the secretion of glucagon-like peptide 1 (GLP-1). Fecal transplantation experiments further confirmed that feces from FGF21-treated diabetic mice demonstrated similar effects as FGF21 in terms of anti-diabetic activity and regulation of gut microbiota dysbiosis. Additionally, the antibiotic depletion of gut microbiota abolished the beneficial effects of FGF21, including increased GLP-1 secretion and fecal SCFA concentration. Additionally, the FGF21 effects of ameliorating intestinal damage and suppressing plasma LPS secretion were suppressed. All these findings suggest that FGF21 prevents intestinal lesions by modifying the gut microbiota composition. Furthermore, FGF21 affected bile acid synthesis by inhibiting CYP7A1, the key enzyme of bile acid synthesis.</p></div><div><h3>Conclussion</h3><p>Therefore, FGF21 enriched beneficial bacteria by preventing bile acid synthesis and stimulating the secretion of the intestinal hormone GLP-1 via the increased production of gut microbiota metabolites, thereby exerting its anti-diabetic effects.</p></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fibroblast growth factor 21 improves insulin sensitivity by modulating the bile acid-gut microbiota axis in type Ⅱ diabetic mice\",\"authors\":\"\",\"doi\":\"10.1016/j.freeradbiomed.2024.09.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Fibroblast growth factor 21 (FGF21) is an important regulator of glycolipid metabolism. However, whether the gut microbiota is related to the anti-diabetic and obesity effects of FGF21 remains unclear.</p></div><div><h3>Methods</h3><p>Our research used KO/KO db/db male mice and streptozotocin (STZ)-induced to simulate the construction of two type II diabetic mellitus (T2DM) models, and detected impaired glucose tolerance in the model by using the ipGTT and ITT assays, and collected feces from the model mice for sequencing of the intestinal flora and the content of short-chain fatty acids. H&E staining was used to detect changes in intestinal tissue, the serum levels of LPS and GLP-1 were detected by ELISA.</p></div><div><h3>Results</h3><p>In this study, we found that FGF21 significantly improved insulin sensitivity, attenuated intestinal lesions, and decreased serum lipopolysaccharide (LPS) concentrations in T2DM mice. Moreover, FGF21 reshaped the gut microbiota and altered their metabolic pathways in T2DM mice, promoting the production of short-chain fatty acids (SCFAs) and the secretion of glucagon-like peptide 1 (GLP-1). Fecal transplantation experiments further confirmed that feces from FGF21-treated diabetic mice demonstrated similar effects as FGF21 in terms of anti-diabetic activity and regulation of gut microbiota dysbiosis. Additionally, the antibiotic depletion of gut microbiota abolished the beneficial effects of FGF21, including increased GLP-1 secretion and fecal SCFA concentration. Additionally, the FGF21 effects of ameliorating intestinal damage and suppressing plasma LPS secretion were suppressed. All these findings suggest that FGF21 prevents intestinal lesions by modifying the gut microbiota composition. Furthermore, FGF21 affected bile acid synthesis by inhibiting CYP7A1, the key enzyme of bile acid synthesis.</p></div><div><h3>Conclussion</h3><p>Therefore, FGF21 enriched beneficial bacteria by preventing bile acid synthesis and stimulating the secretion of the intestinal hormone GLP-1 via the increased production of gut microbiota metabolites, thereby exerting its anti-diabetic effects.</p></div>\",\"PeriodicalId\":12407,\"journal\":{\"name\":\"Free Radical Biology and Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Free Radical Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0891584924006646\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0891584924006646","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景成纤维细胞生长因子 21(FGF21)是糖脂代谢的重要调节因子。然而,肠道微生物群是否与 FGF21 的抗糖尿病和肥胖作用有关仍不清楚。方法我们利用KO/KO db/db雄性小鼠和链脲佐菌素(STZ)诱导的小鼠模拟构建了两种Ⅱ型糖尿病(T2DM)模型,通过ipGTT和ITT检测模型的糖耐量受损情况,并收集模型小鼠的粪便进行肠道菌群和短链脂肪酸含量的测序。结果 本研究发现,FGF21能显著改善T2DM小鼠的胰岛素敏感性,减轻肠道病变,降低血清脂多糖(LPS)浓度。此外,FGF21 还重塑了 T2DM 小鼠的肠道微生物群并改变了其代谢途径,促进了短链脂肪酸 (SCFA) 的产生和胰高血糖素样肽 1 (GLP-1) 的分泌。粪便移植实验进一步证实,FGF21 处理过的糖尿病小鼠的粪便在抗糖尿病活性和调节肠道微生物群失调方面表现出与 FGF21 类似的效果。此外,抗生素耗尽肠道微生物群后,FGF21 的有益作用(包括增加 GLP-1 分泌和粪便 SCFA 浓度)也消失了。此外,FGF21 改善肠道损伤和抑制血浆 LPS 分泌的作用也被抑制。所有这些发现都表明,FGF21 可通过改变肠道微生物群的组成来预防肠道病变。结论因此,FGF21 通过阻止胆汁酸合成和通过增加肠道微生物群代谢产物的产生刺激肠道激素 GLP-1 的分泌来丰富有益菌群,从而发挥其抗糖尿病作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fibroblast growth factor 21 improves insulin sensitivity by modulating the bile acid-gut microbiota axis in type Ⅱ diabetic mice

Background

Fibroblast growth factor 21 (FGF21) is an important regulator of glycolipid metabolism. However, whether the gut microbiota is related to the anti-diabetic and obesity effects of FGF21 remains unclear.

Methods

Our research used KO/KO db/db male mice and streptozotocin (STZ)-induced to simulate the construction of two type II diabetic mellitus (T2DM) models, and detected impaired glucose tolerance in the model by using the ipGTT and ITT assays, and collected feces from the model mice for sequencing of the intestinal flora and the content of short-chain fatty acids. H&E staining was used to detect changes in intestinal tissue, the serum levels of LPS and GLP-1 were detected by ELISA.

Results

In this study, we found that FGF21 significantly improved insulin sensitivity, attenuated intestinal lesions, and decreased serum lipopolysaccharide (LPS) concentrations in T2DM mice. Moreover, FGF21 reshaped the gut microbiota and altered their metabolic pathways in T2DM mice, promoting the production of short-chain fatty acids (SCFAs) and the secretion of glucagon-like peptide 1 (GLP-1). Fecal transplantation experiments further confirmed that feces from FGF21-treated diabetic mice demonstrated similar effects as FGF21 in terms of anti-diabetic activity and regulation of gut microbiota dysbiosis. Additionally, the antibiotic depletion of gut microbiota abolished the beneficial effects of FGF21, including increased GLP-1 secretion and fecal SCFA concentration. Additionally, the FGF21 effects of ameliorating intestinal damage and suppressing plasma LPS secretion were suppressed. All these findings suggest that FGF21 prevents intestinal lesions by modifying the gut microbiota composition. Furthermore, FGF21 affected bile acid synthesis by inhibiting CYP7A1, the key enzyme of bile acid synthesis.

Conclussion

Therefore, FGF21 enriched beneficial bacteria by preventing bile acid synthesis and stimulating the secretion of the intestinal hormone GLP-1 via the increased production of gut microbiota metabolites, thereby exerting its anti-diabetic effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Free Radical Biology and Medicine
Free Radical Biology and Medicine 医学-内分泌学与代谢
CiteScore
14.00
自引率
4.10%
发文量
850
审稿时长
22 days
期刊介绍: Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.
期刊最新文献
Antioxidant mito-TEMPO prevents the increase in tropomyosin oxidation and mitochondrial calcium accumulation under 7-day rat hindlimb suspension Astrocytic lactoferrin deficiency augments MPTP-induced dopaminergic neuron loss by disturbing glutamate/calcium and ER-mitochondria signaling Melatonin ameliorates chronic sleep deprivation against memory encoding vulnerability: Involvement of synapse regulation via the mitochondrial-dependent redox homeostasis-induced autophagy inhibition Quantitative spatial visualization of X-ray irradiation via redox reaction by dynamic nuclear polarization magnetic resonance imaging Development of novel dual-target drugs against visceral leishmaniasis and combinational study with miltefosine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1