Ruike Song , Xiaofeng Wang , Jiahao Zhang , Shengquan Chen , Jianyu Zhou
{"title":"GATDE:用于癌症分类的具有扩散增强蛋白质-蛋白质相互作用的图注意网络","authors":"Ruike Song , Xiaofeng Wang , Jiahao Zhang , Shengquan Chen , Jianyu Zhou","doi":"10.1016/j.ymeth.2024.09.003","DOIUrl":null,"url":null,"abstract":"<div><p>Cancer classification is crucial for effective patient treatment, and recent years have seen various methods emerge based on protein expression levels. However, existing methods oversimplify by assuming uniform interaction strengths and neglecting intermediate influences among proteins. Addressing these limitations, GATDE employs a graph attention network enhanced with diffusion on protein-protein interactions. By constructing a weighted protein-protein interaction network, GATDE captures the diversity of these interactions and uses a diffusion process to assess multi-hop influences between proteins. This information is subsequently incorporated into the graph attention network, resulting in precise cancer classification. Experimental results on breast cancer and pan-cancer datasets demonstrate that GATDE surpasses current leading methods. Additionally, in-depth case studies further validate the effectiveness of the diffusion process and the attention mechanism, highlighting GATDE's robustness and potential for real-world applications.</p></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"231 ","pages":"Pages 70-77"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GATDE: A graph attention network with diffusion-enhanced protein-protein interaction for cancer classification\",\"authors\":\"Ruike Song , Xiaofeng Wang , Jiahao Zhang , Shengquan Chen , Jianyu Zhou\",\"doi\":\"10.1016/j.ymeth.2024.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cancer classification is crucial for effective patient treatment, and recent years have seen various methods emerge based on protein expression levels. However, existing methods oversimplify by assuming uniform interaction strengths and neglecting intermediate influences among proteins. Addressing these limitations, GATDE employs a graph attention network enhanced with diffusion on protein-protein interactions. By constructing a weighted protein-protein interaction network, GATDE captures the diversity of these interactions and uses a diffusion process to assess multi-hop influences between proteins. This information is subsequently incorporated into the graph attention network, resulting in precise cancer classification. Experimental results on breast cancer and pan-cancer datasets demonstrate that GATDE surpasses current leading methods. Additionally, in-depth case studies further validate the effectiveness of the diffusion process and the attention mechanism, highlighting GATDE's robustness and potential for real-world applications.</p></div>\",\"PeriodicalId\":390,\"journal\":{\"name\":\"Methods\",\"volume\":\"231 \",\"pages\":\"Pages 70-77\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1046202324001932\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046202324001932","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
GATDE: A graph attention network with diffusion-enhanced protein-protein interaction for cancer classification
Cancer classification is crucial for effective patient treatment, and recent years have seen various methods emerge based on protein expression levels. However, existing methods oversimplify by assuming uniform interaction strengths and neglecting intermediate influences among proteins. Addressing these limitations, GATDE employs a graph attention network enhanced with diffusion on protein-protein interactions. By constructing a weighted protein-protein interaction network, GATDE captures the diversity of these interactions and uses a diffusion process to assess multi-hop influences between proteins. This information is subsequently incorporated into the graph attention network, resulting in precise cancer classification. Experimental results on breast cancer and pan-cancer datasets demonstrate that GATDE surpasses current leading methods. Additionally, in-depth case studies further validate the effectiveness of the diffusion process and the attention mechanism, highlighting GATDE's robustness and potential for real-world applications.
期刊介绍:
Methods focuses on rapidly developing techniques in the experimental biological and medical sciences.
Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.