Rongxing Cao , Bang Qian , Yuxiong Xue , Jiaen Fang , Yang Liu
{"title":"高密度有机基板在回流焊接过程中的变形机理与优化","authors":"Rongxing Cao , Bang Qian , Yuxiong Xue , Jiaen Fang , Yang Liu","doi":"10.1016/j.microrel.2024.115507","DOIUrl":null,"url":null,"abstract":"<div><p>High-frequency organic dielectric substrate materials have been widely applied in the fabrication of FCBGA (Flip Chip Ball Grid Array) substrates due to their excellent characteristics of high-speed signal transmission. However, their higher coefficient of thermal expansion (CTE) causes the CTE mismatch between the chip and substrate to increase. High-temperature heating during the reflow soldering process intensifies the thermal mismatch within packaging structure, causing severe warping of the substrate, thereby reducing the yield and subsequent reliability. This study adopted a flatness analyzer and scanning electron microscope (SEM) to characterize the package deformation and micromorphology, and found that the substrate warped after reflow soldering, which caused defects such as chip cracks and micro-bump delamination. A fine finite element simulation model was constructed based on the structure of the experimental sample, and the structure deformation during the soldering process was simulated. An accurate finite element simulation model was constructed based on the structure of the experimental sample to simulate the deformation process of substrate during reflow. Research results show that the constraint of the chip on the substrate during the soldering process is the main factor affecting the thermal deformation mechanism, and the deformation can be suppressed by adding stiffener. This research benefits to the design of FCBGA high-density packaging.</p></div>","PeriodicalId":51131,"journal":{"name":"Microelectronics Reliability","volume":"162 ","pages":"Article 115507"},"PeriodicalIF":1.6000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deformation mechanism and optimization of high-density organic substrates during reflow soldering\",\"authors\":\"Rongxing Cao , Bang Qian , Yuxiong Xue , Jiaen Fang , Yang Liu\",\"doi\":\"10.1016/j.microrel.2024.115507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High-frequency organic dielectric substrate materials have been widely applied in the fabrication of FCBGA (Flip Chip Ball Grid Array) substrates due to their excellent characteristics of high-speed signal transmission. However, their higher coefficient of thermal expansion (CTE) causes the CTE mismatch between the chip and substrate to increase. High-temperature heating during the reflow soldering process intensifies the thermal mismatch within packaging structure, causing severe warping of the substrate, thereby reducing the yield and subsequent reliability. This study adopted a flatness analyzer and scanning electron microscope (SEM) to characterize the package deformation and micromorphology, and found that the substrate warped after reflow soldering, which caused defects such as chip cracks and micro-bump delamination. A fine finite element simulation model was constructed based on the structure of the experimental sample, and the structure deformation during the soldering process was simulated. An accurate finite element simulation model was constructed based on the structure of the experimental sample to simulate the deformation process of substrate during reflow. Research results show that the constraint of the chip on the substrate during the soldering process is the main factor affecting the thermal deformation mechanism, and the deformation can be suppressed by adding stiffener. This research benefits to the design of FCBGA high-density packaging.</p></div>\",\"PeriodicalId\":51131,\"journal\":{\"name\":\"Microelectronics Reliability\",\"volume\":\"162 \",\"pages\":\"Article 115507\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics Reliability\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0026271424001872\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Reliability","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026271424001872","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Deformation mechanism and optimization of high-density organic substrates during reflow soldering
High-frequency organic dielectric substrate materials have been widely applied in the fabrication of FCBGA (Flip Chip Ball Grid Array) substrates due to their excellent characteristics of high-speed signal transmission. However, their higher coefficient of thermal expansion (CTE) causes the CTE mismatch between the chip and substrate to increase. High-temperature heating during the reflow soldering process intensifies the thermal mismatch within packaging structure, causing severe warping of the substrate, thereby reducing the yield and subsequent reliability. This study adopted a flatness analyzer and scanning electron microscope (SEM) to characterize the package deformation and micromorphology, and found that the substrate warped after reflow soldering, which caused defects such as chip cracks and micro-bump delamination. A fine finite element simulation model was constructed based on the structure of the experimental sample, and the structure deformation during the soldering process was simulated. An accurate finite element simulation model was constructed based on the structure of the experimental sample to simulate the deformation process of substrate during reflow. Research results show that the constraint of the chip on the substrate during the soldering process is the main factor affecting the thermal deformation mechanism, and the deformation can be suppressed by adding stiffener. This research benefits to the design of FCBGA high-density packaging.
期刊介绍:
Microelectronics Reliability, is dedicated to disseminating the latest research results and related information on the reliability of microelectronic devices, circuits and systems, from materials, process and manufacturing, to design, testing and operation. The coverage of the journal includes the following topics: measurement, understanding and analysis; evaluation and prediction; modelling and simulation; methodologies and mitigation. Papers which combine reliability with other important areas of microelectronics engineering, such as design, fabrication, integration, testing, and field operation will also be welcome, and practical papers reporting case studies in the field and specific application domains are particularly encouraged.
Most accepted papers will be published as Research Papers, describing significant advances and completed work. Papers reviewing important developing topics of general interest may be accepted for publication as Review Papers. Urgent communications of a more preliminary nature and short reports on completed practical work of current interest may be considered for publication as Research Notes. All contributions are subject to peer review by leading experts in the field.