张量不完全多视图聚类的图细化和一致性自监督

IF 14.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Information Fusion Pub Date : 2024-09-20 DOI:10.1016/j.inffus.2024.102709
Wei Liu , Xiaoyuan Jing , Deyu Zeng , Tengyu Zhang
{"title":"张量不完全多视图聚类的图细化和一致性自监督","authors":"Wei Liu ,&nbsp;Xiaoyuan Jing ,&nbsp;Deyu Zeng ,&nbsp;Tengyu Zhang","doi":"10.1016/j.inffus.2024.102709","DOIUrl":null,"url":null,"abstract":"<div><p>In practical multi-view applications, some data in each view are missing. Although recent incomplete multi-view clustering (IMC) approaches have achieved encouraging performance, two challenges remain. They utilize the tensor nuclear norm to explore the high-order correlations among view-specific similarity graphs. Moreover, they only infer the missing views but do not recover the consensus cluster structure across complete views. To address these issues, we propose a new method called graph Refinement and consistency Self-Supervision for Tensorized Incomplete Multi-view Clustering (RS-TIMC). Specifically, RS-TIMC introduces graph decomposition to remove the diverse similarities from the view-specific graphs and utilizes the tensor Schatten-p norm to model the consistent parts. Additionally, by extracting features from the original observable data and inferring the missing instances, RS-TIMC enables the cluster structure of each complete view to be adjusted. Finally, RS-TIMC utilizes consistent similarity graphs to recover the shared local geometric structure across all complete views. Experimental evaluations on several datasets indicate that our method outperforms the start-of-the-art approaches.</p></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"114 ","pages":"Article 102709"},"PeriodicalIF":14.7000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph refinement and consistency self-supervision for tensorized incomplete multi-view clustering\",\"authors\":\"Wei Liu ,&nbsp;Xiaoyuan Jing ,&nbsp;Deyu Zeng ,&nbsp;Tengyu Zhang\",\"doi\":\"10.1016/j.inffus.2024.102709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In practical multi-view applications, some data in each view are missing. Although recent incomplete multi-view clustering (IMC) approaches have achieved encouraging performance, two challenges remain. They utilize the tensor nuclear norm to explore the high-order correlations among view-specific similarity graphs. Moreover, they only infer the missing views but do not recover the consensus cluster structure across complete views. To address these issues, we propose a new method called graph Refinement and consistency Self-Supervision for Tensorized Incomplete Multi-view Clustering (RS-TIMC). Specifically, RS-TIMC introduces graph decomposition to remove the diverse similarities from the view-specific graphs and utilizes the tensor Schatten-p norm to model the consistent parts. Additionally, by extracting features from the original observable data and inferring the missing instances, RS-TIMC enables the cluster structure of each complete view to be adjusted. Finally, RS-TIMC utilizes consistent similarity graphs to recover the shared local geometric structure across all complete views. Experimental evaluations on several datasets indicate that our method outperforms the start-of-the-art approaches.</p></div>\",\"PeriodicalId\":50367,\"journal\":{\"name\":\"Information Fusion\",\"volume\":\"114 \",\"pages\":\"Article 102709\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Fusion\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566253524004871\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253524004871","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在实际的多视图应用中,每个视图中都会缺少一些数据。尽管最近的不完整多视图聚类(IMC)方法取得了令人鼓舞的性能,但仍存在两个挑战。它们利用张量核规范来探索特定视图相似性图之间的高阶相关性。此外,它们只能推断出缺失的视图,却不能恢复完整视图中的共识聚类结构。为了解决这些问题,我们提出了一种名为 "张量化不完整多视图聚类的图细化和一致性自我监督(RS-TIMC)"的新方法。具体来说,RS-TIMC 引入了图分解,以去除特定视图图中的各种相似性,并利用张量 Schatten-p norm 对一致部分进行建模。此外,通过从原始可观测数据中提取特征并推断缺失实例,RS-TIMC 可以调整每个完整视图的聚类结构。最后,RS-TIMC 利用一致性相似图来恢复所有完整视图中共享的局部几何结构。在多个数据集上进行的实验评估表明,我们的方法优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graph refinement and consistency self-supervision for tensorized incomplete multi-view clustering

In practical multi-view applications, some data in each view are missing. Although recent incomplete multi-view clustering (IMC) approaches have achieved encouraging performance, two challenges remain. They utilize the tensor nuclear norm to explore the high-order correlations among view-specific similarity graphs. Moreover, they only infer the missing views but do not recover the consensus cluster structure across complete views. To address these issues, we propose a new method called graph Refinement and consistency Self-Supervision for Tensorized Incomplete Multi-view Clustering (RS-TIMC). Specifically, RS-TIMC introduces graph decomposition to remove the diverse similarities from the view-specific graphs and utilizes the tensor Schatten-p norm to model the consistent parts. Additionally, by extracting features from the original observable data and inferring the missing instances, RS-TIMC enables the cluster structure of each complete view to be adjusted. Finally, RS-TIMC utilizes consistent similarity graphs to recover the shared local geometric structure across all complete views. Experimental evaluations on several datasets indicate that our method outperforms the start-of-the-art approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
期刊最新文献
Pretraining graph transformer for molecular representation with fusion of multimodal information Pan-Mamba: Effective pan-sharpening with state space model An autoencoder-based confederated clustering leveraging a robust model fusion strategy for federated unsupervised learning FairDPFL-SCS: Fair Dynamic Personalized Federated Learning with strategic client selection for improved accuracy and fairness M-IPISincNet: An explainable multi-source physics-informed neural network based on improved SincNet for rolling bearings fault diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1