Emmanouil Sakaridis, Christian C. Roth, Benoit Jordan, Dirk Mohr
{"title":"从平缺口拉伸实验中识别各向异性塑性的颈后全场有限元分析法","authors":"Emmanouil Sakaridis, Christian C. Roth, Benoit Jordan, Dirk Mohr","doi":"10.1016/j.ijsolstr.2024.113076","DOIUrl":null,"url":null,"abstract":"<div><p>This work introduces a finite element model updating (FEMU) identification scheme to determine the material parameters of an anisotropic metal plasticity model. Surround digital image correlation (DIC) data is collected from tensile tests on mildly notched flat specimens and it is used to minimize specimen alignment errors when comparing simulations and experiments. The front surface displacement fields and resultant force history are leveraged to calibrate a Whip-Bezier based material model in a computationally-efficient procedure, which treats the pre- and post-necking regimes separately. Experimental data from specimens with a larger notch radius (NT20) serve as the training set, while data from specimens with a smaller notch radius (NT6) are used for validation. Analysis of identification methods using datasets from virtual experiments highlights the improved generalization ability of the full-field approach compared to solely using force–displacement curves. However, this work also demonstrates that through-thickness necking in real notched tensile experiments is asymmetric. This can hinder the identification of the large strain segment of hardening laws, especially when a FEMU approach incorporates full-field information from one specimen surface only. Consequently, it is recommended to use advanced finite element models that capture asymmetric localized strain fields or to base the identification of large strain hardening responses on experiments that achieve large strains without asymmetric through-thickness strain localization, such as in-plane torsion tests.</p></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"305 ","pages":"Article 113076"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Post-Necking full-field FEMU identification of anisotropic plasticity from flat notched tension experiments\",\"authors\":\"Emmanouil Sakaridis, Christian C. Roth, Benoit Jordan, Dirk Mohr\",\"doi\":\"10.1016/j.ijsolstr.2024.113076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work introduces a finite element model updating (FEMU) identification scheme to determine the material parameters of an anisotropic metal plasticity model. Surround digital image correlation (DIC) data is collected from tensile tests on mildly notched flat specimens and it is used to minimize specimen alignment errors when comparing simulations and experiments. The front surface displacement fields and resultant force history are leveraged to calibrate a Whip-Bezier based material model in a computationally-efficient procedure, which treats the pre- and post-necking regimes separately. Experimental data from specimens with a larger notch radius (NT20) serve as the training set, while data from specimens with a smaller notch radius (NT6) are used for validation. Analysis of identification methods using datasets from virtual experiments highlights the improved generalization ability of the full-field approach compared to solely using force–displacement curves. However, this work also demonstrates that through-thickness necking in real notched tensile experiments is asymmetric. This can hinder the identification of the large strain segment of hardening laws, especially when a FEMU approach incorporates full-field information from one specimen surface only. Consequently, it is recommended to use advanced finite element models that capture asymmetric localized strain fields or to base the identification of large strain hardening responses on experiments that achieve large strains without asymmetric through-thickness strain localization, such as in-plane torsion tests.</p></div>\",\"PeriodicalId\":14311,\"journal\":{\"name\":\"International Journal of Solids and Structures\",\"volume\":\"305 \",\"pages\":\"Article 113076\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Solids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020768324004359\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768324004359","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Post-Necking full-field FEMU identification of anisotropic plasticity from flat notched tension experiments
This work introduces a finite element model updating (FEMU) identification scheme to determine the material parameters of an anisotropic metal plasticity model. Surround digital image correlation (DIC) data is collected from tensile tests on mildly notched flat specimens and it is used to minimize specimen alignment errors when comparing simulations and experiments. The front surface displacement fields and resultant force history are leveraged to calibrate a Whip-Bezier based material model in a computationally-efficient procedure, which treats the pre- and post-necking regimes separately. Experimental data from specimens with a larger notch radius (NT20) serve as the training set, while data from specimens with a smaller notch radius (NT6) are used for validation. Analysis of identification methods using datasets from virtual experiments highlights the improved generalization ability of the full-field approach compared to solely using force–displacement curves. However, this work also demonstrates that through-thickness necking in real notched tensile experiments is asymmetric. This can hinder the identification of the large strain segment of hardening laws, especially when a FEMU approach incorporates full-field information from one specimen surface only. Consequently, it is recommended to use advanced finite element models that capture asymmetric localized strain fields or to base the identification of large strain hardening responses on experiments that achieve large strains without asymmetric through-thickness strain localization, such as in-plane torsion tests.
期刊介绍:
The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.