Wireko Andrew Awuah , Adam Ben-Jaafar , Jonathan Sing Huk Kong , Vivek Sanker , Muhammad Hamza Shah , Jeisun Poornaselvan , Mabel Frimpong , Shahzeb Imran , Tony Alocious , Toufik Abdul-Rahman , Oday Atallah
{"title":"关于 TREM2 在脑血管疾病中作用的新见解","authors":"Wireko Andrew Awuah , Adam Ben-Jaafar , Jonathan Sing Huk Kong , Vivek Sanker , Muhammad Hamza Shah , Jeisun Poornaselvan , Mabel Frimpong , Shahzeb Imran , Tony Alocious , Toufik Abdul-Rahman , Oday Atallah","doi":"10.1016/j.brainres.2024.149245","DOIUrl":null,"url":null,"abstract":"<div><p>Cerebrovascular diseases (CVDs) include conditions such as stroke, cerebral amyloid angiopathy (CAA) and cerebral small vessel disease (CSVD), which contribute significantly to global morbidity and healthcare burden. The pathophysiology of CVD is complex, involving inflammatory, cellular and vascular mechanisms. Recently, research has focused on triggering receptor expressed on myeloid cells 2 (TREM2), an immune receptor predominantly found on microglia. TREM2 interacts with multiple signalling pathways, particularly toll-like receptor 4 (<em>TLR4</em>) and nuclear factor kappa B (<em>NF-κB)</em>, inhibiting patients’ inflammatory response. This receptor plays an essential role in both immune regulation and neuroprotection. TREM2 deficiency or dysfunction is associated with impaired microglial responses, exacerbated neurodegeneration and neuroinflammation. Up until recently, TREM2 related studies have focused on neurodegenerative diseases (NDs), however a shift in focus towards CVDs is beginning to take place. Advancements in CVD research have focused on developing therapeutic strategies targeting TREM2 to enhance recovery and reduce long-term deficits. These include the exploration of TREM2 agonists and combination therapies with other anti-inflammatory agents, which may synergistically reduce neuroinflammation and promote neuroprotection. The modulation of TREM2 activity holds potential for innovative treatment approaches aimed at improving patient outcomes following cerebrovascular insults. This review compiles current research on TREM2, emphasising its molecular mechanisms, therapeutic potential, and advancements in CNS disease research.</p></div>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":"1846 ","pages":"Article 149245"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0006899324004992/pdfft?md5=78f5307953b5517be692b64c89e128ad&pid=1-s2.0-S0006899324004992-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Novel insights into the role of TREM2 in cerebrovascular diseases\",\"authors\":\"Wireko Andrew Awuah , Adam Ben-Jaafar , Jonathan Sing Huk Kong , Vivek Sanker , Muhammad Hamza Shah , Jeisun Poornaselvan , Mabel Frimpong , Shahzeb Imran , Tony Alocious , Toufik Abdul-Rahman , Oday Atallah\",\"doi\":\"10.1016/j.brainres.2024.149245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cerebrovascular diseases (CVDs) include conditions such as stroke, cerebral amyloid angiopathy (CAA) and cerebral small vessel disease (CSVD), which contribute significantly to global morbidity and healthcare burden. The pathophysiology of CVD is complex, involving inflammatory, cellular and vascular mechanisms. Recently, research has focused on triggering receptor expressed on myeloid cells 2 (TREM2), an immune receptor predominantly found on microglia. TREM2 interacts with multiple signalling pathways, particularly toll-like receptor 4 (<em>TLR4</em>) and nuclear factor kappa B (<em>NF-κB)</em>, inhibiting patients’ inflammatory response. This receptor plays an essential role in both immune regulation and neuroprotection. TREM2 deficiency or dysfunction is associated with impaired microglial responses, exacerbated neurodegeneration and neuroinflammation. Up until recently, TREM2 related studies have focused on neurodegenerative diseases (NDs), however a shift in focus towards CVDs is beginning to take place. Advancements in CVD research have focused on developing therapeutic strategies targeting TREM2 to enhance recovery and reduce long-term deficits. These include the exploration of TREM2 agonists and combination therapies with other anti-inflammatory agents, which may synergistically reduce neuroinflammation and promote neuroprotection. The modulation of TREM2 activity holds potential for innovative treatment approaches aimed at improving patient outcomes following cerebrovascular insults. This review compiles current research on TREM2, emphasising its molecular mechanisms, therapeutic potential, and advancements in CNS disease research.</p></div>\",\"PeriodicalId\":9083,\"journal\":{\"name\":\"Brain Research\",\"volume\":\"1846 \",\"pages\":\"Article 149245\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0006899324004992/pdfft?md5=78f5307953b5517be692b64c89e128ad&pid=1-s2.0-S0006899324004992-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006899324004992\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006899324004992","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Novel insights into the role of TREM2 in cerebrovascular diseases
Cerebrovascular diseases (CVDs) include conditions such as stroke, cerebral amyloid angiopathy (CAA) and cerebral small vessel disease (CSVD), which contribute significantly to global morbidity and healthcare burden. The pathophysiology of CVD is complex, involving inflammatory, cellular and vascular mechanisms. Recently, research has focused on triggering receptor expressed on myeloid cells 2 (TREM2), an immune receptor predominantly found on microglia. TREM2 interacts with multiple signalling pathways, particularly toll-like receptor 4 (TLR4) and nuclear factor kappa B (NF-κB), inhibiting patients’ inflammatory response. This receptor plays an essential role in both immune regulation and neuroprotection. TREM2 deficiency or dysfunction is associated with impaired microglial responses, exacerbated neurodegeneration and neuroinflammation. Up until recently, TREM2 related studies have focused on neurodegenerative diseases (NDs), however a shift in focus towards CVDs is beginning to take place. Advancements in CVD research have focused on developing therapeutic strategies targeting TREM2 to enhance recovery and reduce long-term deficits. These include the exploration of TREM2 agonists and combination therapies with other anti-inflammatory agents, which may synergistically reduce neuroinflammation and promote neuroprotection. The modulation of TREM2 activity holds potential for innovative treatment approaches aimed at improving patient outcomes following cerebrovascular insults. This review compiles current research on TREM2, emphasising its molecular mechanisms, therapeutic potential, and advancements in CNS disease research.
期刊介绍:
An international multidisciplinary journal devoted to fundamental research in the brain sciences.
Brain Research publishes papers reporting interdisciplinary investigations of nervous system structure and function that are of general interest to the international community of neuroscientists. As is evident from the journals name, its scope is broad, ranging from cellular and molecular studies through systems neuroscience, cognition and disease. Invited reviews are also published; suggestions for and inquiries about potential reviews are welcomed.
With the appearance of the final issue of the 2011 subscription, Vol. 67/1-2 (24 June 2011), Brain Research Reviews has ceased publication as a distinct journal separate from Brain Research. Review articles accepted for Brain Research are now published in that journal.