硬粒小麦今天和明天的生产力:影响因素和气候变化效应综述

IF 12.4 Q1 ENVIRONMENTAL SCIENCES Resources Environment and Sustainability Pub Date : 2024-09-01 DOI:10.1016/j.resenv.2024.100170
Malin Grosse-Heilmann, Elena Cristiano, Roberto Deidda, Francesco Viola
{"title":"硬粒小麦今天和明天的生产力:影响因素和气候变化效应综述","authors":"Malin Grosse-Heilmann,&nbsp;Elena Cristiano,&nbsp;Roberto Deidda,&nbsp;Francesco Viola","doi":"10.1016/j.resenv.2024.100170","DOIUrl":null,"url":null,"abstract":"<div><p>Durum wheat is a crucial staple crop in many arid and semi-arid regions around the world, significantly contributing to local food security. This review paper aims to explore the current status of durum wheat productivity and the potential impacts of future climatic conditions on its cultivation. Various drivers and constraints affecting durum wheat yield are examined, including biotic and abiotic stressors, CO<sub>2</sub> concentrations and agronomic practices. Drought and heat stress were identified as the primary yield limiting factors. Furthermore, the influence of climate change on durum wheat is evaluated, focusing on altered precipitation patterns, temperature extremes, and increased atmospheric CO<sub>2</sub> levels. Most prominent quantification methods for climate change impact on yields are explored. The paper provides a summary of the current state of research, which reveals some contradictory results for future durum wheat yields. On the one hand, significant increases in productivity due to the fertilization effect of higher CO<sub>2</sub> levels are predicted. On the other hand, the crop failures are foreseen as consequence of elevated heat and drought stress as part of climate change. Overall, this paper underlines the importance of understanding the complex interactions between climate change and durum wheat productivity and highlights the urgency to explore sustainable adaptation strategies to ensure future food security.</p></div>","PeriodicalId":34479,"journal":{"name":"Resources Environment and Sustainability","volume":"17 ","pages":"Article 100170"},"PeriodicalIF":12.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666916124000239/pdfft?md5=870d2268c25f90596d5314fba554bc6a&pid=1-s2.0-S2666916124000239-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Durum wheat productivity today and tomorrow: A review of influencing factors and climate change effects\",\"authors\":\"Malin Grosse-Heilmann,&nbsp;Elena Cristiano,&nbsp;Roberto Deidda,&nbsp;Francesco Viola\",\"doi\":\"10.1016/j.resenv.2024.100170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Durum wheat is a crucial staple crop in many arid and semi-arid regions around the world, significantly contributing to local food security. This review paper aims to explore the current status of durum wheat productivity and the potential impacts of future climatic conditions on its cultivation. Various drivers and constraints affecting durum wheat yield are examined, including biotic and abiotic stressors, CO<sub>2</sub> concentrations and agronomic practices. Drought and heat stress were identified as the primary yield limiting factors. Furthermore, the influence of climate change on durum wheat is evaluated, focusing on altered precipitation patterns, temperature extremes, and increased atmospheric CO<sub>2</sub> levels. Most prominent quantification methods for climate change impact on yields are explored. The paper provides a summary of the current state of research, which reveals some contradictory results for future durum wheat yields. On the one hand, significant increases in productivity due to the fertilization effect of higher CO<sub>2</sub> levels are predicted. On the other hand, the crop failures are foreseen as consequence of elevated heat and drought stress as part of climate change. Overall, this paper underlines the importance of understanding the complex interactions between climate change and durum wheat productivity and highlights the urgency to explore sustainable adaptation strategies to ensure future food security.</p></div>\",\"PeriodicalId\":34479,\"journal\":{\"name\":\"Resources Environment and Sustainability\",\"volume\":\"17 \",\"pages\":\"Article 100170\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666916124000239/pdfft?md5=870d2268c25f90596d5314fba554bc6a&pid=1-s2.0-S2666916124000239-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resources Environment and Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666916124000239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Environment and Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666916124000239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

硬粒小麦是全球许多干旱和半干旱地区的重要主粮作物,对当地的粮食安全做出了重大贡献。本综述旨在探讨硬粒小麦的生产力现状以及未来气候条件对其种植的潜在影响。本文探讨了影响硬粒小麦产量的各种驱动因素和制约因素,包括生物和非生物胁迫、二氧化碳浓度和农艺实践。干旱和热胁迫被认为是限制产量的主要因素。此外,还评估了气候变化对硬粒小麦的影响,重点关注降水模式的改变、极端温度和大气中二氧化碳浓度的增加。还探讨了气候变化对产量影响的最主要量化方法。论文总结了当前的研究现状,揭示了未来硬粒小麦产量的一些矛盾结果。一方面,由于更高的二氧化碳水平产生的施肥效应,预计产量将大幅提高。另一方面,作为气候变化的一部分,预计高温和干旱胁迫会导致作物歉收。总之,本文强调了了解气候变化与硬质小麦生产力之间复杂互动关系的重要性,并突出了探索可持续适应战略以确保未来粮食安全的紧迫性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Durum wheat productivity today and tomorrow: A review of influencing factors and climate change effects

Durum wheat is a crucial staple crop in many arid and semi-arid regions around the world, significantly contributing to local food security. This review paper aims to explore the current status of durum wheat productivity and the potential impacts of future climatic conditions on its cultivation. Various drivers and constraints affecting durum wheat yield are examined, including biotic and abiotic stressors, CO2 concentrations and agronomic practices. Drought and heat stress were identified as the primary yield limiting factors. Furthermore, the influence of climate change on durum wheat is evaluated, focusing on altered precipitation patterns, temperature extremes, and increased atmospheric CO2 levels. Most prominent quantification methods for climate change impact on yields are explored. The paper provides a summary of the current state of research, which reveals some contradictory results for future durum wheat yields. On the one hand, significant increases in productivity due to the fertilization effect of higher CO2 levels are predicted. On the other hand, the crop failures are foreseen as consequence of elevated heat and drought stress as part of climate change. Overall, this paper underlines the importance of understanding the complex interactions between climate change and durum wheat productivity and highlights the urgency to explore sustainable adaptation strategies to ensure future food security.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Resources Environment and Sustainability
Resources Environment and Sustainability Environmental Science-Environmental Science (miscellaneous)
CiteScore
15.10
自引率
0.00%
发文量
41
审稿时长
33 days
期刊最新文献
Household energy use and barriers in clean transition in the Tibetan Plateau Enhancing the performance of runoff prediction in data-scarce hydrological domains using advanced transfer learning Unveiling driving disparities between satisfaction and equity of ecosystem services in urbanized areas Unraveling the impact of global change on glomalin and implications for soil carbon storage in terrestrial ecosystems Appropriately delayed flooding before rice transplanting increases net ecosystem economic benefit in the winter green manure-rice rotation system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1