利用中红外高光谱成像技术测量实验室火焰中未燃烧的甲烷排放量

IF 2.3 3区 物理与天体物理 Q2 OPTICS Journal of Quantitative Spectroscopy & Radiative Transfer Pub Date : 2024-09-20 DOI:10.1016/j.jqsrt.2024.109193
Jesús Belmar , David Santalices , Shania Sánchez , Susana Briz, Juan Meléndez
{"title":"利用中红外高光谱成像技术测量实验室火焰中未燃烧的甲烷排放量","authors":"Jesús Belmar ,&nbsp;David Santalices ,&nbsp;Shania Sánchez ,&nbsp;Susana Briz,&nbsp;Juan Meléndez","doi":"10.1016/j.jqsrt.2024.109193","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we present a novel method for measuring unburned methane (CH<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>) emissions in laboratory flames using mid-infrared hyperspectral imaging. Given the environmental significance of methane’s global warming potential, accurately quantifying emissions from combustion processes is critical. Our approach integrates an extended-area blackbody as the infrared source and a bandpass interference filter to mitigate issues of noise, low signal levels and detector saturation. This setup enabled high-resolution spectral analysis, capturing detailed concentration and temperature maps of methane around the flame. We tracked the dynamics of methane pockets escaping the flame using the hyperspectral imaging system in high-speed camera mode, providing insights into the behavior of unburned gases, such as the velocity of methane pockets. The study demonstrates the feasibility of this technique for assessing combustion efficiency by quantifying the flow of unburned methane through a control surface. Our findings suggest that mid-infrared hyperspectral imaging is a robust tool for remote sensing of methane emissions, offering significant advancements in the accurate measurement and analysis of combustion processes, and providing a benchmarking platform for measurement approaches intended for field applications.</p></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"329 ","pages":"Article 109193"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022407324003005/pdfft?md5=99a1deb019a74e1a4cf89ece27885de2&pid=1-s2.0-S0022407324003005-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Measurement of unburned methane emissions in laboratory flames using mid-infrared hyperspectral imaging\",\"authors\":\"Jesús Belmar ,&nbsp;David Santalices ,&nbsp;Shania Sánchez ,&nbsp;Susana Briz,&nbsp;Juan Meléndez\",\"doi\":\"10.1016/j.jqsrt.2024.109193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we present a novel method for measuring unburned methane (CH<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>) emissions in laboratory flames using mid-infrared hyperspectral imaging. Given the environmental significance of methane’s global warming potential, accurately quantifying emissions from combustion processes is critical. Our approach integrates an extended-area blackbody as the infrared source and a bandpass interference filter to mitigate issues of noise, low signal levels and detector saturation. This setup enabled high-resolution spectral analysis, capturing detailed concentration and temperature maps of methane around the flame. We tracked the dynamics of methane pockets escaping the flame using the hyperspectral imaging system in high-speed camera mode, providing insights into the behavior of unburned gases, such as the velocity of methane pockets. The study demonstrates the feasibility of this technique for assessing combustion efficiency by quantifying the flow of unburned methane through a control surface. Our findings suggest that mid-infrared hyperspectral imaging is a robust tool for remote sensing of methane emissions, offering significant advancements in the accurate measurement and analysis of combustion processes, and providing a benchmarking platform for measurement approaches intended for field applications.</p></div>\",\"PeriodicalId\":16935,\"journal\":{\"name\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"volume\":\"329 \",\"pages\":\"Article 109193\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022407324003005/pdfft?md5=99a1deb019a74e1a4cf89ece27885de2&pid=1-s2.0-S0022407324003005-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022407324003005\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Spectroscopy & Radiative Transfer","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022407324003005","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们提出了一种利用中红外高光谱成像技术测量实验室火焰中未燃烧甲烷(CH4)排放量的新方法。鉴于甲烷的全球变暖潜力对环境的重要意义,准确量化燃烧过程中的排放至关重要。我们的方法集成了一个扩展区域黑体作为红外源和一个带通干扰滤波器,以缓解噪声、低信号水平和探测器饱和等问题。这种设置能够进行高分辨率光谱分析,捕捉火焰周围甲烷的详细浓度和温度图。我们在高速摄像模式下使用高光谱成像系统跟踪逸出火焰的甲烷袋的动态,从而深入了解未燃烧气体的行为,例如甲烷袋的速度。这项研究通过量化未燃烧甲烷流经控制面的情况,证明了这项技术在评估燃烧效率方面的可行性。我们的研究结果表明,中红外高光谱成像技术是一种强大的甲烷排放遥感工具,在精确测量和分析燃烧过程方面取得了重大进展,并为现场应用的测量方法提供了一个基准平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Measurement of unburned methane emissions in laboratory flames using mid-infrared hyperspectral imaging

In this study, we present a novel method for measuring unburned methane (CH4) emissions in laboratory flames using mid-infrared hyperspectral imaging. Given the environmental significance of methane’s global warming potential, accurately quantifying emissions from combustion processes is critical. Our approach integrates an extended-area blackbody as the infrared source and a bandpass interference filter to mitigate issues of noise, low signal levels and detector saturation. This setup enabled high-resolution spectral analysis, capturing detailed concentration and temperature maps of methane around the flame. We tracked the dynamics of methane pockets escaping the flame using the hyperspectral imaging system in high-speed camera mode, providing insights into the behavior of unburned gases, such as the velocity of methane pockets. The study demonstrates the feasibility of this technique for assessing combustion efficiency by quantifying the flow of unburned methane through a control surface. Our findings suggest that mid-infrared hyperspectral imaging is a robust tool for remote sensing of methane emissions, offering significant advancements in the accurate measurement and analysis of combustion processes, and providing a benchmarking platform for measurement approaches intended for field applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
21.70%
发文量
273
审稿时长
58 days
期刊介绍: Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer: - Theoretical and experimental aspects of the spectra of atoms, molecules, ions, and plasmas. - Spectral lineshape studies including models and computational algorithms. - Atmospheric spectroscopy. - Theoretical and experimental aspects of light scattering. - Application of light scattering in particle characterization and remote sensing. - Application of light scattering in biological sciences and medicine. - Radiative transfer in absorbing, emitting, and scattering media. - Radiative transfer in stochastic media.
期刊最新文献
Update Granada–Amsterdam Light Scattering Database Line-shape parameters and their temperature dependence for self-broadened CO2 lines in the 296 K- 1250 K range by requantized classical molecular dynamics simulations The j and k dependencies of N2-, O2-, and air-broadened halfwidths of the CH3CN molecule Impacts of scattering plane randomization on lidar multiple scattering polarization signals from water clouds Stark broadening of Sn II spectral lines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1