Jesús Belmar , David Santalices , Shania Sánchez , Susana Briz, Juan Meléndez
{"title":"利用中红外高光谱成像技术测量实验室火焰中未燃烧的甲烷排放量","authors":"Jesús Belmar , David Santalices , Shania Sánchez , Susana Briz, Juan Meléndez","doi":"10.1016/j.jqsrt.2024.109193","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we present a novel method for measuring unburned methane (CH<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>) emissions in laboratory flames using mid-infrared hyperspectral imaging. Given the environmental significance of methane’s global warming potential, accurately quantifying emissions from combustion processes is critical. Our approach integrates an extended-area blackbody as the infrared source and a bandpass interference filter to mitigate issues of noise, low signal levels and detector saturation. This setup enabled high-resolution spectral analysis, capturing detailed concentration and temperature maps of methane around the flame. We tracked the dynamics of methane pockets escaping the flame using the hyperspectral imaging system in high-speed camera mode, providing insights into the behavior of unburned gases, such as the velocity of methane pockets. The study demonstrates the feasibility of this technique for assessing combustion efficiency by quantifying the flow of unburned methane through a control surface. Our findings suggest that mid-infrared hyperspectral imaging is a robust tool for remote sensing of methane emissions, offering significant advancements in the accurate measurement and analysis of combustion processes, and providing a benchmarking platform for measurement approaches intended for field applications.</p></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"329 ","pages":"Article 109193"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022407324003005/pdfft?md5=99a1deb019a74e1a4cf89ece27885de2&pid=1-s2.0-S0022407324003005-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Measurement of unburned methane emissions in laboratory flames using mid-infrared hyperspectral imaging\",\"authors\":\"Jesús Belmar , David Santalices , Shania Sánchez , Susana Briz, Juan Meléndez\",\"doi\":\"10.1016/j.jqsrt.2024.109193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we present a novel method for measuring unburned methane (CH<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>) emissions in laboratory flames using mid-infrared hyperspectral imaging. Given the environmental significance of methane’s global warming potential, accurately quantifying emissions from combustion processes is critical. Our approach integrates an extended-area blackbody as the infrared source and a bandpass interference filter to mitigate issues of noise, low signal levels and detector saturation. This setup enabled high-resolution spectral analysis, capturing detailed concentration and temperature maps of methane around the flame. We tracked the dynamics of methane pockets escaping the flame using the hyperspectral imaging system in high-speed camera mode, providing insights into the behavior of unburned gases, such as the velocity of methane pockets. The study demonstrates the feasibility of this technique for assessing combustion efficiency by quantifying the flow of unburned methane through a control surface. Our findings suggest that mid-infrared hyperspectral imaging is a robust tool for remote sensing of methane emissions, offering significant advancements in the accurate measurement and analysis of combustion processes, and providing a benchmarking platform for measurement approaches intended for field applications.</p></div>\",\"PeriodicalId\":16935,\"journal\":{\"name\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"volume\":\"329 \",\"pages\":\"Article 109193\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022407324003005/pdfft?md5=99a1deb019a74e1a4cf89ece27885de2&pid=1-s2.0-S0022407324003005-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022407324003005\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Spectroscopy & Radiative Transfer","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022407324003005","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Measurement of unburned methane emissions in laboratory flames using mid-infrared hyperspectral imaging
In this study, we present a novel method for measuring unburned methane (CH) emissions in laboratory flames using mid-infrared hyperspectral imaging. Given the environmental significance of methane’s global warming potential, accurately quantifying emissions from combustion processes is critical. Our approach integrates an extended-area blackbody as the infrared source and a bandpass interference filter to mitigate issues of noise, low signal levels and detector saturation. This setup enabled high-resolution spectral analysis, capturing detailed concentration and temperature maps of methane around the flame. We tracked the dynamics of methane pockets escaping the flame using the hyperspectral imaging system in high-speed camera mode, providing insights into the behavior of unburned gases, such as the velocity of methane pockets. The study demonstrates the feasibility of this technique for assessing combustion efficiency by quantifying the flow of unburned methane through a control surface. Our findings suggest that mid-infrared hyperspectral imaging is a robust tool for remote sensing of methane emissions, offering significant advancements in the accurate measurement and analysis of combustion processes, and providing a benchmarking platform for measurement approaches intended for field applications.
期刊介绍:
Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer:
- Theoretical and experimental aspects of the spectra of atoms, molecules, ions, and plasmas.
- Spectral lineshape studies including models and computational algorithms.
- Atmospheric spectroscopy.
- Theoretical and experimental aspects of light scattering.
- Application of light scattering in particle characterization and remote sensing.
- Application of light scattering in biological sciences and medicine.
- Radiative transfer in absorbing, emitting, and scattering media.
- Radiative transfer in stochastic media.