利用磁屏蔽效应进行二维定位的创新方法

IF 4.1 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Sensors and Actuators A-physical Pub Date : 2024-09-19 DOI:10.1016/j.sna.2024.115910
{"title":"利用磁屏蔽效应进行二维定位的创新方法","authors":"","doi":"10.1016/j.sna.2024.115910","DOIUrl":null,"url":null,"abstract":"<div><p>The effect on an electromagnetic field when a low-cost magnetically permeable object such as copper or aluminum is placed within it can be observed to determine the object’s location. This approach offers a novel technique to achieve reliable localization, particularly in environments where line of sight sensing methods may be non-applicable. Shields up to a size of 30×30 mm and a thickness of 80 µm were investigated; copper shields of these dimensions reduced the signal strength to 91 %, and aluminum shields reduced the signal strength to 94 % of its initial strength. The distortions to the electromagnetic field were closely related to the location of the tag. By fitting an inverted Gaussian curve to each sensor’s data, the position of a shield along a line could be predicted. This method can be used to locate a tag within a 2D plane by creating a 2D array of sensors beneath the sensing plane.</p></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S092442472400904X/pdfft?md5=81229dc7789e6cc4acfb12858fcb0957&pid=1-s2.0-S092442472400904X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An innovative approach to 2D localization using the magnetic shielding effect\",\"authors\":\"\",\"doi\":\"10.1016/j.sna.2024.115910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The effect on an electromagnetic field when a low-cost magnetically permeable object such as copper or aluminum is placed within it can be observed to determine the object’s location. This approach offers a novel technique to achieve reliable localization, particularly in environments where line of sight sensing methods may be non-applicable. Shields up to a size of 30×30 mm and a thickness of 80 µm were investigated; copper shields of these dimensions reduced the signal strength to 91 %, and aluminum shields reduced the signal strength to 94 % of its initial strength. The distortions to the electromagnetic field were closely related to the location of the tag. By fitting an inverted Gaussian curve to each sensor’s data, the position of a shield along a line could be predicted. This method can be used to locate a tag within a 2D plane by creating a 2D array of sensors beneath the sensing plane.</p></div>\",\"PeriodicalId\":21689,\"journal\":{\"name\":\"Sensors and Actuators A-physical\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S092442472400904X/pdfft?md5=81229dc7789e6cc4acfb12858fcb0957&pid=1-s2.0-S092442472400904X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators A-physical\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092442472400904X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators A-physical","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092442472400904X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

当在电磁场中放置铜或铝等低成本透磁物体时,可以通过观察其对电磁场的影响来确定物体的位置。这种方法提供了一种实现可靠定位的新技术,特别是在视线传感方法可能不适用的环境中。对尺寸为 30×30 毫米、厚度为 80 微米的屏蔽进行了研究;这些尺寸的铜屏蔽将信号强度降低到 91%,铝屏蔽将信号强度降低到初始强度的 94%。电磁场的失真与标签的位置密切相关。通过对每个传感器的数据进行倒高斯曲线拟合,可以预测屏蔽层沿线的位置。通过在传感平面下方创建一个二维传感器阵列,这种方法可用于定位二维平面内的标签。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An innovative approach to 2D localization using the magnetic shielding effect

The effect on an electromagnetic field when a low-cost magnetically permeable object such as copper or aluminum is placed within it can be observed to determine the object’s location. This approach offers a novel technique to achieve reliable localization, particularly in environments where line of sight sensing methods may be non-applicable. Shields up to a size of 30×30 mm and a thickness of 80 µm were investigated; copper shields of these dimensions reduced the signal strength to 91 %, and aluminum shields reduced the signal strength to 94 % of its initial strength. The distortions to the electromagnetic field were closely related to the location of the tag. By fitting an inverted Gaussian curve to each sensor’s data, the position of a shield along a line could be predicted. This method can be used to locate a tag within a 2D plane by creating a 2D array of sensors beneath the sensing plane.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors and Actuators A-physical
Sensors and Actuators A-physical 工程技术-工程:电子与电气
CiteScore
8.10
自引率
6.50%
发文量
630
审稿时长
49 days
期刊介绍: Sensors and Actuators A: Physical brings together multidisciplinary interests in one journal entirely devoted to disseminating information on all aspects of research and development of solid-state devices for transducing physical signals. Sensors and Actuators A: Physical regularly publishes original papers, letters to the Editors and from time to time invited review articles within the following device areas: • Fundamentals and Physics, such as: classification of effects, physical effects, measurement theory, modelling of sensors, measurement standards, measurement errors, units and constants, time and frequency measurement. Modeling papers should bring new modeling techniques to the field and be supported by experimental results. • Materials and their Processing, such as: piezoelectric materials, polymers, metal oxides, III-V and II-VI semiconductors, thick and thin films, optical glass fibres, amorphous, polycrystalline and monocrystalline silicon. • Optoelectronic sensors, such as: photovoltaic diodes, photoconductors, photodiodes, phototransistors, positron-sensitive photodetectors, optoisolators, photodiode arrays, charge-coupled devices, light-emitting diodes, injection lasers and liquid-crystal displays. • Mechanical sensors, such as: metallic, thin-film and semiconductor strain gauges, diffused silicon pressure sensors, silicon accelerometers, solid-state displacement transducers, piezo junction devices, piezoelectric field-effect transducers (PiFETs), tunnel-diode strain sensors, surface acoustic wave devices, silicon micromechanical switches, solid-state flow meters and electronic flow controllers. Etc...
期刊最新文献
High-selectivity NIR amorphous silicon-based plasmonic photodetector at room temperature 2D beam steering using phased array of MEMS tunable grating couplers Focus-switchable piezoelectric actuator: A bionic thin-plate design inspired by conch structure Methods of fabrication and modeling of CMUTs – A review Effect of material anisotropy on the first-order vibration of piezoelectric oscillators in circular plate configurations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1