{"title":"混合数据中心网络中的多波长集成发射机动态容量共享","authors":"Jiawen Zhu;Weiqiang Sun;Tong Ye;Weisheng Hu","doi":"10.1364/JOCN.528443","DOIUrl":null,"url":null,"abstract":"In datacenters, bursty and unevenly distributed traffic may lead to serious network performance degradation. Various methods, including reconfigurable optical circuit switching (OCS), traffic control techniques, valiant load balancing (VLB), and so on, have been proposed to solve this problem. Based on these solutions, our method makes a trade-off between cost and performance. In this paper, we propose to use multi-wavelength tunable transmitters in our previously proposed modular arrayed waveguide grating (AWG)-based interconnection network. We discuss how the multiple wavelengths can be shared in the network and then propose a computational model to study its blocking probability. Closed-form equations for low network load cases are also derived to provide the analytical expression for the blocking probability. We verify the accuracy of our computational model through simulations. Comparing the blocking probability of networks with and without multi-wavelength integrated transmitters, we show that network performance can be considerably improved after replacement. When traffic burstiness is 1.25 and traffic skewness is 0.08, the blocking probability is reduced from 0.14 to \n<tex>$3.60 \\times {10^{- 3}}$</tex>\n after replacing in each sending module one fixed laser with multi-wavelength tunable transmitters with four wavelengths. Furthermore, we also discuss how different factors influence the blocking probability and the maximum load with the given network performance requirement.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 10","pages":"990-1005"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic capacity sharing with multi-wavelength integrated transmitters in hybrid datacenter networks\",\"authors\":\"Jiawen Zhu;Weiqiang Sun;Tong Ye;Weisheng Hu\",\"doi\":\"10.1364/JOCN.528443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In datacenters, bursty and unevenly distributed traffic may lead to serious network performance degradation. Various methods, including reconfigurable optical circuit switching (OCS), traffic control techniques, valiant load balancing (VLB), and so on, have been proposed to solve this problem. Based on these solutions, our method makes a trade-off between cost and performance. In this paper, we propose to use multi-wavelength tunable transmitters in our previously proposed modular arrayed waveguide grating (AWG)-based interconnection network. We discuss how the multiple wavelengths can be shared in the network and then propose a computational model to study its blocking probability. Closed-form equations for low network load cases are also derived to provide the analytical expression for the blocking probability. We verify the accuracy of our computational model through simulations. Comparing the blocking probability of networks with and without multi-wavelength integrated transmitters, we show that network performance can be considerably improved after replacement. When traffic burstiness is 1.25 and traffic skewness is 0.08, the blocking probability is reduced from 0.14 to \\n<tex>$3.60 \\\\times {10^{- 3}}$</tex>\\n after replacing in each sending module one fixed laser with multi-wavelength tunable transmitters with four wavelengths. Furthermore, we also discuss how different factors influence the blocking probability and the maximum load with the given network performance requirement.\",\"PeriodicalId\":50103,\"journal\":{\"name\":\"Journal of Optical Communications and Networking\",\"volume\":\"16 10\",\"pages\":\"990-1005\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optical Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10684889/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10684889/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Dynamic capacity sharing with multi-wavelength integrated transmitters in hybrid datacenter networks
In datacenters, bursty and unevenly distributed traffic may lead to serious network performance degradation. Various methods, including reconfigurable optical circuit switching (OCS), traffic control techniques, valiant load balancing (VLB), and so on, have been proposed to solve this problem. Based on these solutions, our method makes a trade-off between cost and performance. In this paper, we propose to use multi-wavelength tunable transmitters in our previously proposed modular arrayed waveguide grating (AWG)-based interconnection network. We discuss how the multiple wavelengths can be shared in the network and then propose a computational model to study its blocking probability. Closed-form equations for low network load cases are also derived to provide the analytical expression for the blocking probability. We verify the accuracy of our computational model through simulations. Comparing the blocking probability of networks with and without multi-wavelength integrated transmitters, we show that network performance can be considerably improved after replacement. When traffic burstiness is 1.25 and traffic skewness is 0.08, the blocking probability is reduced from 0.14 to
$3.60 \times {10^{- 3}}$
after replacing in each sending module one fixed laser with multi-wavelength tunable transmitters with four wavelengths. Furthermore, we also discuss how different factors influence the blocking probability and the maximum load with the given network performance requirement.
期刊介绍:
The scope of the Journal includes advances in the state-of-the-art of optical networking science, technology, and engineering. Both theoretical contributions (including new techniques, concepts, analyses, and economic studies) and practical contributions (including optical networking experiments, prototypes, and new applications) are encouraged. Subareas of interest include the architecture and design of optical networks, optical network survivability and security, software-defined optical networking, elastic optical networks, data and control plane advances, network management related innovation, and optical access networks. Enabling technologies and their applications are suitable topics only if the results are shown to directly impact optical networking beyond simple point-to-point networks.