Dalei Jing, Ruixin Lu, Alexander Farutin, Ziyu Guo, Fan Wang, Wen Wang, Chaouqi Misbah, Yi Sui
{"title":"液滴可增强通道流中的微囊变形","authors":"Dalei Jing, Ruixin Lu, Alexander Farutin, Ziyu Guo, Fan Wang, Wen Wang, Chaouqi Misbah, Yi Sui","doi":"10.1038/s42005-024-01805-4","DOIUrl":null,"url":null,"abstract":"The dynamics of soft microparticles enclosed in a droplet flowing in a channel is an unexplored fundamental problem that lies at the heart of numerous applications, including droplet-based microfluidics, tissue engineering and smart material synthesis. Here we show that enclosing a flexible capsule into a droplet can amplify the capsule’s deformation parameters in channel flow by up to two orders of magnitude. Previously unreported capsule equilibrium shapes in channel flow, including an oblate spheroid and a reversed bullet, have also been discovered. We propose two theoretical models to predict the equilibrium position of the capsule inside the droplet, and estimate the capsule deformation, respectively. The present study provides an effective but simple approach to enhance and control the deformation of soft particles in a flowing suspension, which may inspire widespread applications, from high-throughput single-cell mechanical phenotyping, enhanced cross-membrane drug delivery, to manufacturing shape-controlled non-spherical particles and artificial cells. Enhancing deformation of soft microparticles such as cells, capsules and vesicles has widespread applications in cell phenotyping, drug/gene delivery and smart material synthesis. Here, the authors demonstrate that enclosing a capsule into a droplet can amplify the capsule deformation parameter by up to two orders of magnitude, compared with an isolated capsule experiencing identical channel flow conditions.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-10"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01805-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Droplets can enhance microcapsule deformation in channel flow\",\"authors\":\"Dalei Jing, Ruixin Lu, Alexander Farutin, Ziyu Guo, Fan Wang, Wen Wang, Chaouqi Misbah, Yi Sui\",\"doi\":\"10.1038/s42005-024-01805-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamics of soft microparticles enclosed in a droplet flowing in a channel is an unexplored fundamental problem that lies at the heart of numerous applications, including droplet-based microfluidics, tissue engineering and smart material synthesis. Here we show that enclosing a flexible capsule into a droplet can amplify the capsule’s deformation parameters in channel flow by up to two orders of magnitude. Previously unreported capsule equilibrium shapes in channel flow, including an oblate spheroid and a reversed bullet, have also been discovered. We propose two theoretical models to predict the equilibrium position of the capsule inside the droplet, and estimate the capsule deformation, respectively. The present study provides an effective but simple approach to enhance and control the deformation of soft particles in a flowing suspension, which may inspire widespread applications, from high-throughput single-cell mechanical phenotyping, enhanced cross-membrane drug delivery, to manufacturing shape-controlled non-spherical particles and artificial cells. Enhancing deformation of soft microparticles such as cells, capsules and vesicles has widespread applications in cell phenotyping, drug/gene delivery and smart material synthesis. Here, the authors demonstrate that enclosing a capsule into a droplet can amplify the capsule deformation parameter by up to two orders of magnitude, compared with an isolated capsule experiencing identical channel flow conditions.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01805-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01805-4\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01805-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Droplets can enhance microcapsule deformation in channel flow
The dynamics of soft microparticles enclosed in a droplet flowing in a channel is an unexplored fundamental problem that lies at the heart of numerous applications, including droplet-based microfluidics, tissue engineering and smart material synthesis. Here we show that enclosing a flexible capsule into a droplet can amplify the capsule’s deformation parameters in channel flow by up to two orders of magnitude. Previously unreported capsule equilibrium shapes in channel flow, including an oblate spheroid and a reversed bullet, have also been discovered. We propose two theoretical models to predict the equilibrium position of the capsule inside the droplet, and estimate the capsule deformation, respectively. The present study provides an effective but simple approach to enhance and control the deformation of soft particles in a flowing suspension, which may inspire widespread applications, from high-throughput single-cell mechanical phenotyping, enhanced cross-membrane drug delivery, to manufacturing shape-controlled non-spherical particles and artificial cells. Enhancing deformation of soft microparticles such as cells, capsules and vesicles has widespread applications in cell phenotyping, drug/gene delivery and smart material synthesis. Here, the authors demonstrate that enclosing a capsule into a droplet can amplify the capsule deformation parameter by up to two orders of magnitude, compared with an isolated capsule experiencing identical channel flow conditions.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.