液滴可增强通道流中的微囊变形

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Communications Physics Pub Date : 2024-09-20 DOI:10.1038/s42005-024-01805-4
Dalei Jing, Ruixin Lu, Alexander Farutin, Ziyu Guo, Fan Wang, Wen Wang, Chaouqi Misbah, Yi Sui
{"title":"液滴可增强通道流中的微囊变形","authors":"Dalei Jing, Ruixin Lu, Alexander Farutin, Ziyu Guo, Fan Wang, Wen Wang, Chaouqi Misbah, Yi Sui","doi":"10.1038/s42005-024-01805-4","DOIUrl":null,"url":null,"abstract":"The dynamics of soft microparticles enclosed in a droplet flowing in a channel is an unexplored fundamental problem that lies at the heart of numerous applications, including droplet-based microfluidics, tissue engineering and smart material synthesis. Here we show that enclosing a flexible capsule into a droplet can amplify the capsule’s deformation parameters in channel flow by up to two orders of magnitude. Previously unreported capsule equilibrium shapes in channel flow, including an oblate spheroid and a reversed bullet, have also been discovered. We propose two theoretical models to predict the equilibrium position of the capsule inside the droplet, and estimate the capsule deformation, respectively. The present study provides an effective but simple approach to enhance and control the deformation of soft particles in a flowing suspension, which may inspire widespread applications, from high-throughput single-cell mechanical phenotyping, enhanced cross-membrane drug delivery, to manufacturing shape-controlled non-spherical particles and artificial cells. Enhancing deformation of soft microparticles such as cells, capsules and vesicles has widespread applications in cell phenotyping, drug/gene delivery and smart material synthesis. Here, the authors demonstrate that enclosing a capsule into a droplet can amplify the capsule deformation parameter by up to two orders of magnitude, compared with an isolated capsule experiencing identical channel flow conditions.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-10"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01805-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Droplets can enhance microcapsule deformation in channel flow\",\"authors\":\"Dalei Jing, Ruixin Lu, Alexander Farutin, Ziyu Guo, Fan Wang, Wen Wang, Chaouqi Misbah, Yi Sui\",\"doi\":\"10.1038/s42005-024-01805-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamics of soft microparticles enclosed in a droplet flowing in a channel is an unexplored fundamental problem that lies at the heart of numerous applications, including droplet-based microfluidics, tissue engineering and smart material synthesis. Here we show that enclosing a flexible capsule into a droplet can amplify the capsule’s deformation parameters in channel flow by up to two orders of magnitude. Previously unreported capsule equilibrium shapes in channel flow, including an oblate spheroid and a reversed bullet, have also been discovered. We propose two theoretical models to predict the equilibrium position of the capsule inside the droplet, and estimate the capsule deformation, respectively. The present study provides an effective but simple approach to enhance and control the deformation of soft particles in a flowing suspension, which may inspire widespread applications, from high-throughput single-cell mechanical phenotyping, enhanced cross-membrane drug delivery, to manufacturing shape-controlled non-spherical particles and artificial cells. Enhancing deformation of soft microparticles such as cells, capsules and vesicles has widespread applications in cell phenotyping, drug/gene delivery and smart material synthesis. Here, the authors demonstrate that enclosing a capsule into a droplet can amplify the capsule deformation parameter by up to two orders of magnitude, compared with an isolated capsule experiencing identical channel flow conditions.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01805-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01805-4\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01805-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

液滴中的软微粒在通道中流动时的动力学是一个尚未探索的基本问题,它是众多应用的核心,包括基于液滴的微流体、组织工程和智能材料合成。在这里,我们展示了将柔性胶囊包围在液滴中可以将胶囊在通道流动中的变形参数放大两个数量级。我们还发现了以前未报道过的胶囊在通道流中的平衡形状,包括扁球形和反向子弹形。我们提出了两个理论模型,分别用于预测液滴内胶囊的平衡位置和估计胶囊的变形。本研究提供了一种有效而简单的方法来增强和控制流动悬浮液中软颗粒的形变,它可能会激发从高通量单细胞机械表型、增强跨膜给药到制造形状可控的非球形颗粒和人造细胞等方面的广泛应用。增强细胞、胶囊和囊泡等软性微颗粒的变形在细胞表型、药物/基因递送和智能材料合成方面有着广泛的应用。作者在本文中证明,与经历相同通道流动条件的孤立胶囊相比,将胶囊包围在液滴中可将胶囊变形参数放大两个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Droplets can enhance microcapsule deformation in channel flow
The dynamics of soft microparticles enclosed in a droplet flowing in a channel is an unexplored fundamental problem that lies at the heart of numerous applications, including droplet-based microfluidics, tissue engineering and smart material synthesis. Here we show that enclosing a flexible capsule into a droplet can amplify the capsule’s deformation parameters in channel flow by up to two orders of magnitude. Previously unreported capsule equilibrium shapes in channel flow, including an oblate spheroid and a reversed bullet, have also been discovered. We propose two theoretical models to predict the equilibrium position of the capsule inside the droplet, and estimate the capsule deformation, respectively. The present study provides an effective but simple approach to enhance and control the deformation of soft particles in a flowing suspension, which may inspire widespread applications, from high-throughput single-cell mechanical phenotyping, enhanced cross-membrane drug delivery, to manufacturing shape-controlled non-spherical particles and artificial cells. Enhancing deformation of soft microparticles such as cells, capsules and vesicles has widespread applications in cell phenotyping, drug/gene delivery and smart material synthesis. Here, the authors demonstrate that enclosing a capsule into a droplet can amplify the capsule deformation parameter by up to two orders of magnitude, compared with an isolated capsule experiencing identical channel flow conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
期刊最新文献
Topological transition in filamentous cyanobacteria: from motion to structure Benchmarking the optimization of optical machines with the planted solutions Spontaneous flows and quantum analogies in heterogeneous active nematic films Quantum switch instabilities with an open control Time persistence of climate and carbon flux networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1