Yuqi Li, Xueli Zheng, Evan Z. Carlson, Xin Xiao, Xiwen Chi, Yi Cui, Louisa C. Greenburg, Ge Zhang, Elizabeth Zhang, Chenwei Liu, Yufei Yang, Mun Sek Kim, Guangxia Feng, Pu Zhang, Hance Su, Xun Guan, Jiawei Zhou, Yecun Wu, Zhichen Xue, Weiyu Li, Michal Bajdich, Yi Cui
{"title":"在电解质中原位形成具有软模板效应的液晶间相,用于水性无双电极电池","authors":"Yuqi Li, Xueli Zheng, Evan Z. Carlson, Xin Xiao, Xiwen Chi, Yi Cui, Louisa C. Greenburg, Ge Zhang, Elizabeth Zhang, Chenwei Liu, Yufei Yang, Mun Sek Kim, Guangxia Feng, Pu Zhang, Hance Su, Xun Guan, Jiawei Zhou, Yecun Wu, Zhichen Xue, Weiyu Li, Michal Bajdich, Yi Cui","doi":"10.1038/s41560-024-01638-z","DOIUrl":null,"url":null,"abstract":"<p>Zn/MnO<sub>2</sub> batteries, driven by a dual deposition reaction, are a prominent avenue for achieving high energy density in aqueous systems. Introducing an initially dual-electrode-free (anode/cathode) configuration can further boost energy density to over 200 Wh kg<sup>−1</sup>, but with limited cycle life due to the poor reversibility of Zn/MnO<sub>2</sub> deposition and stripping. Drawing inspiration from soft templating strategies in material synthesis, here we apply this approach to electrodeposition and stripping by designing an in situ formed liquid crystal interphase. This concept is achieved by incorporating just 0.1 mM of surfactant molecules into the electrolyte, which induces favourable <i>c</i>-axis orientations in depositing both hexagonal Zn and MnO<sub>2</sub>. This enhancement subsequently increases the deposition/stripping reversibility and promotes the cycle life of the dual-electrode-free battery, achieving 80% capacity retention after ~950 cycles. This liquid crystal interphase chemistry also holds great promise for regulating deposition in other crystal systems, opening an exciting research direction for next-generation high-energy-density and long-duration energy storage based on aqueous chemistries.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"25 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In situ formation of liquid crystal interphase in electrolytes with soft templating effects for aqueous dual-electrode-free batteries\",\"authors\":\"Yuqi Li, Xueli Zheng, Evan Z. Carlson, Xin Xiao, Xiwen Chi, Yi Cui, Louisa C. Greenburg, Ge Zhang, Elizabeth Zhang, Chenwei Liu, Yufei Yang, Mun Sek Kim, Guangxia Feng, Pu Zhang, Hance Su, Xun Guan, Jiawei Zhou, Yecun Wu, Zhichen Xue, Weiyu Li, Michal Bajdich, Yi Cui\",\"doi\":\"10.1038/s41560-024-01638-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Zn/MnO<sub>2</sub> batteries, driven by a dual deposition reaction, are a prominent avenue for achieving high energy density in aqueous systems. Introducing an initially dual-electrode-free (anode/cathode) configuration can further boost energy density to over 200 Wh kg<sup>−1</sup>, but with limited cycle life due to the poor reversibility of Zn/MnO<sub>2</sub> deposition and stripping. Drawing inspiration from soft templating strategies in material synthesis, here we apply this approach to electrodeposition and stripping by designing an in situ formed liquid crystal interphase. This concept is achieved by incorporating just 0.1 mM of surfactant molecules into the electrolyte, which induces favourable <i>c</i>-axis orientations in depositing both hexagonal Zn and MnO<sub>2</sub>. This enhancement subsequently increases the deposition/stripping reversibility and promotes the cycle life of the dual-electrode-free battery, achieving 80% capacity retention after ~950 cycles. This liquid crystal interphase chemistry also holds great promise for regulating deposition in other crystal systems, opening an exciting research direction for next-generation high-energy-density and long-duration energy storage based on aqueous chemistries.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41560-024-01638-z\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41560-024-01638-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
由双沉积反应驱动的锌/二氧化锰电池是在水性体系中实现高能量密度的重要途径。引入初始无双电极(阳极/阴极)配置可将能量密度进一步提高到 200 Wh kg-1 以上,但由于 Zn/MnO2 沉积和剥离的可逆性较差,因此循环寿命有限。我们从材料合成中的软模板策略中汲取灵感,通过设计一种原位形成的液晶中间相,将这种方法应用于电沉积和剥离。这一概念是通过在电解液中加入仅 0.1 mM 的表面活性剂分子来实现的,它能在沉积六方锌和二氧化锰时诱导有利的 c 轴取向。这种增强随后提高了沉积/剥离的可逆性,并延长了无双电极电池的循环寿命,在大约 950 次循环后实现了 80% 的容量保持率。这种液晶相间化学也为调节其他晶体系统中的沉积带来了巨大希望,为基于水化学的下一代高能量密度和长寿命储能开辟了令人兴奋的研究方向。
In situ formation of liquid crystal interphase in electrolytes with soft templating effects for aqueous dual-electrode-free batteries
Zn/MnO2 batteries, driven by a dual deposition reaction, are a prominent avenue for achieving high energy density in aqueous systems. Introducing an initially dual-electrode-free (anode/cathode) configuration can further boost energy density to over 200 Wh kg−1, but with limited cycle life due to the poor reversibility of Zn/MnO2 deposition and stripping. Drawing inspiration from soft templating strategies in material synthesis, here we apply this approach to electrodeposition and stripping by designing an in situ formed liquid crystal interphase. This concept is achieved by incorporating just 0.1 mM of surfactant molecules into the electrolyte, which induces favourable c-axis orientations in depositing both hexagonal Zn and MnO2. This enhancement subsequently increases the deposition/stripping reversibility and promotes the cycle life of the dual-electrode-free battery, achieving 80% capacity retention after ~950 cycles. This liquid crystal interphase chemistry also holds great promise for regulating deposition in other crystal systems, opening an exciting research direction for next-generation high-energy-density and long-duration energy storage based on aqueous chemistries.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.