{"title":"结晶调制和整体钝化实现高效双端 Perovskite/CuIn(Ga)Se2 串联太阳能电池","authors":"Cong Geng, Kuanxiang Zhang, Changhua Wang, Chung Hsien Wu, Jiwen Jiang, Fei Long, Liyuan Han, Qifeng Han, Yi-Bing Cheng, Yong Peng","doi":"10.1007/s40820-024-01514-1","DOIUrl":null,"url":null,"abstract":"<div><p>Two-terminal (2-T) perovskite (PVK)/CuIn(Ga)Se<sub>2</sub> (CIGS) tandem solar cells (TSCs) have been considered as an ideal tandem cell because of their best bandgap matching regarding to Shockley–Queisser (S–Q) limits. However, the nature of the irregular rough morphology of commercial CIGS prevents people from improving tandem device performances. In this paper, D-homoserine lactone hydrochloride is proven to improve coverage of PVK materials on irregular rough CIGS surfaces and also passivate bulk defects by modulating the growth of PVK crystals. In addition, the minority carriers near the PVK/C60 interface and the incompletely passivated trap states caused interface recombination. A surface reconstruction with 2-thiopheneethylammonium iodide and <i>N</i>,<i>N</i>-dimethylformamide assisted passivates the defect sites located at the surface and grain boundaries. Meanwhile, LiF is used to create this field effect, repelling hole carriers away from the PVK and C60 interface and thus reducing recombination. As a result, a 2-T PVK/CIGS tandem yielded a power conversion efficiency of 24.6% (0.16 cm<sup>2</sup>), one of the highest results for 2-T PVK/CIGS TSCs to our knowledge. This validation underscores the potential of our methodology in achieving superior performance in PVK/CIGS tandem solar cells.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-024-01514-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Crystallization Modulation and Holistic Passivation Enables Efficient Two-Terminal Perovskite/CuIn(Ga)Se2 Tandem Solar Cells\",\"authors\":\"Cong Geng, Kuanxiang Zhang, Changhua Wang, Chung Hsien Wu, Jiwen Jiang, Fei Long, Liyuan Han, Qifeng Han, Yi-Bing Cheng, Yong Peng\",\"doi\":\"10.1007/s40820-024-01514-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Two-terminal (2-T) perovskite (PVK)/CuIn(Ga)Se<sub>2</sub> (CIGS) tandem solar cells (TSCs) have been considered as an ideal tandem cell because of their best bandgap matching regarding to Shockley–Queisser (S–Q) limits. However, the nature of the irregular rough morphology of commercial CIGS prevents people from improving tandem device performances. In this paper, D-homoserine lactone hydrochloride is proven to improve coverage of PVK materials on irregular rough CIGS surfaces and also passivate bulk defects by modulating the growth of PVK crystals. In addition, the minority carriers near the PVK/C60 interface and the incompletely passivated trap states caused interface recombination. A surface reconstruction with 2-thiopheneethylammonium iodide and <i>N</i>,<i>N</i>-dimethylformamide assisted passivates the defect sites located at the surface and grain boundaries. Meanwhile, LiF is used to create this field effect, repelling hole carriers away from the PVK and C60 interface and thus reducing recombination. As a result, a 2-T PVK/CIGS tandem yielded a power conversion efficiency of 24.6% (0.16 cm<sup>2</sup>), one of the highest results for 2-T PVK/CIGS TSCs to our knowledge. This validation underscores the potential of our methodology in achieving superior performance in PVK/CIGS tandem solar cells.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":26.6000,\"publicationDate\":\"2024-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40820-024-01514-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-024-01514-1\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-024-01514-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Crystallization Modulation and Holistic Passivation Enables Efficient Two-Terminal Perovskite/CuIn(Ga)Se2 Tandem Solar Cells
Two-terminal (2-T) perovskite (PVK)/CuIn(Ga)Se2 (CIGS) tandem solar cells (TSCs) have been considered as an ideal tandem cell because of their best bandgap matching regarding to Shockley–Queisser (S–Q) limits. However, the nature of the irregular rough morphology of commercial CIGS prevents people from improving tandem device performances. In this paper, D-homoserine lactone hydrochloride is proven to improve coverage of PVK materials on irregular rough CIGS surfaces and also passivate bulk defects by modulating the growth of PVK crystals. In addition, the minority carriers near the PVK/C60 interface and the incompletely passivated trap states caused interface recombination. A surface reconstruction with 2-thiopheneethylammonium iodide and N,N-dimethylformamide assisted passivates the defect sites located at the surface and grain boundaries. Meanwhile, LiF is used to create this field effect, repelling hole carriers away from the PVK and C60 interface and thus reducing recombination. As a result, a 2-T PVK/CIGS tandem yielded a power conversion efficiency of 24.6% (0.16 cm2), one of the highest results for 2-T PVK/CIGS TSCs to our knowledge. This validation underscores the potential of our methodology in achieving superior performance in PVK/CIGS tandem solar cells.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand.
Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields.
Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.