用于 PEM 水电解器的复合阳极:使用导电添加剂降低铱含量和材料成本

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-09-06 DOI:10.1021/acsaem.4c0186610.1021/acsaem.4c01866
Kara J. Ferner,  and , Shawn Litster*, 
{"title":"用于 PEM 水电解器的复合阳极:使用导电添加剂降低铱含量和材料成本","authors":"Kara J. Ferner,&nbsp; and ,&nbsp;Shawn Litster*,&nbsp;","doi":"10.1021/acsaem.4c0186610.1021/acsaem.4c01866","DOIUrl":null,"url":null,"abstract":"<p >To enable the greater installed capacity of proton exchange membrane water electrolysis (PEMWE) for clean hydrogen production, associated costs must be lowered while achieving high current density performance and durability. Scarce and expensive iridium (Ir) required for the oxygen evolution reaction (OER) is a large contributor to the overall cost, yet high loadings of Ir (1–2 mg<sub>Ir</sub> cm<sup>–2</sup>) are currently needed in commercial systems to maintain sufficient activity, conductivity, and durability. To meet the aggressive targets for low Ir loadings, we introduce a composite anode approach using a conductive additive that is less expensive than Ir to facilitate robust, high-performance operation with low Ir loading by retaining electrode thickness and in-plane electrical conductivity. In this demonstration, we use platinum (Pt) black as the conductive additive given its high electrical conductivity, acid stability, and current price one-fifth that of Ir. Using a high-activity commercial Ir oxide (IrO<i><sub>x</sub></i>) catalyst, we present a 95% Ir loading reduction and 80% cost reduction of the anode catalyst materials while maintaining equal current density performance at a cell voltage of 1.8 V. Furthermore, we show enhanced stability of a composite anode compared to an IrO<i><sub>x</sub></i> anode with loadings of 0.10 mg<sub>Ir</sub> cm<sup>–2</sup> via accelerated stress test (AST) and postmortem imaging. With this approach, we show promising results toward lowering Ir loadings and material costs, addressing a significant barrier to the widespread adoption of PEMWE for clean hydrogen production.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsaem.4c01866","citationCount":"0","resultStr":"{\"title\":\"Composite Anode for PEM Water Electrolyzers: Lowering Iridium Loadings and Reducing Material Costs with a Conductive Additive\",\"authors\":\"Kara J. Ferner,&nbsp; and ,&nbsp;Shawn Litster*,&nbsp;\",\"doi\":\"10.1021/acsaem.4c0186610.1021/acsaem.4c01866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >To enable the greater installed capacity of proton exchange membrane water electrolysis (PEMWE) for clean hydrogen production, associated costs must be lowered while achieving high current density performance and durability. Scarce and expensive iridium (Ir) required for the oxygen evolution reaction (OER) is a large contributor to the overall cost, yet high loadings of Ir (1–2 mg<sub>Ir</sub> cm<sup>–2</sup>) are currently needed in commercial systems to maintain sufficient activity, conductivity, and durability. To meet the aggressive targets for low Ir loadings, we introduce a composite anode approach using a conductive additive that is less expensive than Ir to facilitate robust, high-performance operation with low Ir loading by retaining electrode thickness and in-plane electrical conductivity. In this demonstration, we use platinum (Pt) black as the conductive additive given its high electrical conductivity, acid stability, and current price one-fifth that of Ir. Using a high-activity commercial Ir oxide (IrO<i><sub>x</sub></i>) catalyst, we present a 95% Ir loading reduction and 80% cost reduction of the anode catalyst materials while maintaining equal current density performance at a cell voltage of 1.8 V. Furthermore, we show enhanced stability of a composite anode compared to an IrO<i><sub>x</sub></i> anode with loadings of 0.10 mg<sub>Ir</sub> cm<sup>–2</sup> via accelerated stress test (AST) and postmortem imaging. With this approach, we show promising results toward lowering Ir loadings and material costs, addressing a significant barrier to the widespread adoption of PEMWE for clean hydrogen production.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsaem.4c01866\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.4c01866\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c01866","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了提高质子交换膜水电解法(PEMWE)用于清洁制氢的装机容量,必须在实现高电流密度性能和耐用性的同时降低相关成本。氧进化反应(OER)所需的铱(Ir)稀缺且昂贵,是造成总成本的主要原因,但目前在商业系统中需要较高的铱负载量(1-2 mgIr cm-2),以保持足够的活性、导电性和耐用性。为了达到低 Ir 负载的苛刻目标,我们引入了一种复合阳极方法,使用比 Ir 更便宜的导电添加剂,通过保持电极厚度和面内导电性,在低 Ir 负载的情况下实现稳健、高性能的运行。在这次演示中,我们使用铂(Pt)黑作为导电添加剂,因为它具有高导电性、酸稳定性,而且目前的价格只有 Ir 的五分之一。通过使用高活性的商用氧化铱(IrOx)催化剂,我们发现在电池电压为 1.8 V 时,铱的负载量减少了 95%,阳极催化剂材料的成本降低了 80%,同时保持了相同的电流密度性能。此外,通过加速应力测试 (AST) 和死后成像,我们还展示了复合阳极与负载量为 0.10 mgIr cm-2 的氧化铱阳极相比所具有的更高稳定性。通过这种方法,我们在降低Ir负载和材料成本方面取得了可喜的成果,解决了广泛采用PEMWE进行清洁制氢的重大障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Composite Anode for PEM Water Electrolyzers: Lowering Iridium Loadings and Reducing Material Costs with a Conductive Additive

To enable the greater installed capacity of proton exchange membrane water electrolysis (PEMWE) for clean hydrogen production, associated costs must be lowered while achieving high current density performance and durability. Scarce and expensive iridium (Ir) required for the oxygen evolution reaction (OER) is a large contributor to the overall cost, yet high loadings of Ir (1–2 mgIr cm–2) are currently needed in commercial systems to maintain sufficient activity, conductivity, and durability. To meet the aggressive targets for low Ir loadings, we introduce a composite anode approach using a conductive additive that is less expensive than Ir to facilitate robust, high-performance operation with low Ir loading by retaining electrode thickness and in-plane electrical conductivity. In this demonstration, we use platinum (Pt) black as the conductive additive given its high electrical conductivity, acid stability, and current price one-fifth that of Ir. Using a high-activity commercial Ir oxide (IrOx) catalyst, we present a 95% Ir loading reduction and 80% cost reduction of the anode catalyst materials while maintaining equal current density performance at a cell voltage of 1.8 V. Furthermore, we show enhanced stability of a composite anode compared to an IrOx anode with loadings of 0.10 mgIr cm–2 via accelerated stress test (AST) and postmortem imaging. With this approach, we show promising results toward lowering Ir loadings and material costs, addressing a significant barrier to the widespread adoption of PEMWE for clean hydrogen production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Low-Grade Chronic Inflammation: a Shared Mechanism for Chronic Diseases. Predictors of Inflammation-Mediated Preterm Birth. Factors Contributing to Heat Tolerance in Humans and Experimental Models. Harnessing Deep Learning Methods for Voltage-Gated Ion Channel Drug Discovery. Role of RANKL Signaling in Bone Homeostasis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1