用于增强二氧化碳吸收和超级电容式储能的四苯基蒽醌和二羟基苯系共轭微孔聚合物

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY JACS Au Pub Date : 2024-08-16 DOI:10.1021/jacsau.4c0053710.1021/jacsau.4c00537
Mohamed Gamal Mohamed, Chia-Chi Chen, Mervat Ibrahim, Aya Osama Mousa, Mohamed Hammad Elsayed, Yunsheng Ye and Shiao-Wei Kuo*, 
{"title":"用于增强二氧化碳吸收和超级电容式储能的四苯基蒽醌和二羟基苯系共轭微孔聚合物","authors":"Mohamed Gamal Mohamed,&nbsp;Chia-Chi Chen,&nbsp;Mervat Ibrahim,&nbsp;Aya Osama Mousa,&nbsp;Mohamed Hammad Elsayed,&nbsp;Yunsheng Ye and Shiao-Wei Kuo*,&nbsp;","doi":"10.1021/jacsau.4c0053710.1021/jacsau.4c00537","DOIUrl":null,"url":null,"abstract":"<p >Conjugated microporous polymers (CMPs) feature extended excellent porosity properties and fully conjugated electronic systems, making them highly effective for several uses, including photocatalysis, dye adsorption, CO<sub>2</sub> capture, supercapacitors, and so on. These polymers are known for their high specific surface area and adjustable porosity. To synthesize DHTP-CMPs (specifically TPE-DHTP CMP and Anthra-DHTP CMP) with abundant nitrogen (N) and oxygen (O) adsorption sites and spherical structures, we employed a straightforward Schiff-base [4 + 2] condensation reaction. This involved using 2,5-dihydroxyterephthalaldehyde (DHTP-2CHO) as the primary building block and phenolic OH group source, along with two distinct structures: 4,4′,4″,4”’-(ethene-1,1,2,2-tetrayl)tetraaniline (TPE-4NH<sub>2</sub>) and 4,4′,4″,4”’-(anthracene-9,10-diylidenebis(methanediylylidene))tetraaniline (Anthra-4Ph-4NH<sub>2</sub>). The synthesized Anthra-DHTP CMP had a remarkable BET surface area (BET<sub>SA</sub>) of 431 m<sup>2</sup> g<sup>–1</sup>. Additionally, it exhibited outstanding thermal stability, as shown by a <i>T</i><sub>d10</sub> of 505 °C. Furthermore, for practical implementation, the Anthra-DHTP CMP demonstrates a significant capacity for capturing CO<sub>2</sub>, measuring 1.85 mmol g<sup>–1</sup> at a temperature of 273 K and 1 bar. In a three-electrode test, the Anthra-DHTP CMP has a remarkable specific capacitance of 121 F g<sup>–1</sup> at 0.5 A g<sup>–1</sup>. Furthermore, even after undergoing 5000 cycles, it maintains a capacitance retention rate of 79%. Due to their outstanding pore characteristics, abundant N and O, and conjugation properties, this Anthtra-DHTP CMP holds significant potential for CO<sub>2</sub> capture and supercapacitor applications. This work will pave the way for the development of materials based on DHTP-CMPs and their postmodification with additional groups, facilitating their use in photocatalysis, photodegradation, lithium battery applications, and so on.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"4 9","pages":"3593–3605 3593–3605"},"PeriodicalIF":8.5000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00537","citationCount":"0","resultStr":"{\"title\":\"Tetraphenylanthraquinone and Dihydroxybenzene-Tethered Conjugated Microporous Polymer for Enhanced CO2 Uptake and Supercapacitive Energy Storage\",\"authors\":\"Mohamed Gamal Mohamed,&nbsp;Chia-Chi Chen,&nbsp;Mervat Ibrahim,&nbsp;Aya Osama Mousa,&nbsp;Mohamed Hammad Elsayed,&nbsp;Yunsheng Ye and Shiao-Wei Kuo*,&nbsp;\",\"doi\":\"10.1021/jacsau.4c0053710.1021/jacsau.4c00537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Conjugated microporous polymers (CMPs) feature extended excellent porosity properties and fully conjugated electronic systems, making them highly effective for several uses, including photocatalysis, dye adsorption, CO<sub>2</sub> capture, supercapacitors, and so on. These polymers are known for their high specific surface area and adjustable porosity. To synthesize DHTP-CMPs (specifically TPE-DHTP CMP and Anthra-DHTP CMP) with abundant nitrogen (N) and oxygen (O) adsorption sites and spherical structures, we employed a straightforward Schiff-base [4 + 2] condensation reaction. This involved using 2,5-dihydroxyterephthalaldehyde (DHTP-2CHO) as the primary building block and phenolic OH group source, along with two distinct structures: 4,4′,4″,4”’-(ethene-1,1,2,2-tetrayl)tetraaniline (TPE-4NH<sub>2</sub>) and 4,4′,4″,4”’-(anthracene-9,10-diylidenebis(methanediylylidene))tetraaniline (Anthra-4Ph-4NH<sub>2</sub>). The synthesized Anthra-DHTP CMP had a remarkable BET surface area (BET<sub>SA</sub>) of 431 m<sup>2</sup> g<sup>–1</sup>. Additionally, it exhibited outstanding thermal stability, as shown by a <i>T</i><sub>d10</sub> of 505 °C. Furthermore, for practical implementation, the Anthra-DHTP CMP demonstrates a significant capacity for capturing CO<sub>2</sub>, measuring 1.85 mmol g<sup>–1</sup> at a temperature of 273 K and 1 bar. In a three-electrode test, the Anthra-DHTP CMP has a remarkable specific capacitance of 121 F g<sup>–1</sup> at 0.5 A g<sup>–1</sup>. Furthermore, even after undergoing 5000 cycles, it maintains a capacitance retention rate of 79%. Due to their outstanding pore characteristics, abundant N and O, and conjugation properties, this Anthtra-DHTP CMP holds significant potential for CO<sub>2</sub> capture and supercapacitor applications. This work will pave the way for the development of materials based on DHTP-CMPs and their postmodification with additional groups, facilitating their use in photocatalysis, photodegradation, lithium battery applications, and so on.</p>\",\"PeriodicalId\":94060,\"journal\":{\"name\":\"JACS Au\",\"volume\":\"4 9\",\"pages\":\"3593–3605 3593–3605\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00537\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JACS Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacsau.4c00537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.4c00537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

共轭微孔聚合物(CMPs)具有扩展的优异孔隙率特性和完全共轭的电子系统,因此在光催化、染料吸附、二氧化碳捕获、超级电容器等多种用途上都非常有效。这些聚合物以高比表面积和可调孔隙率著称。为了合成具有大量氮(N)和氧(O)吸附位点和球形结构的 DHTP-CMP(特别是 TPE-DHTP CMP 和 Anthra-DHTP CMP),我们采用了一种简单的席夫碱 [4 + 2] 缩合反应。该反应以 2,5-二羟基对苯二甲醛(DHTP-2CHO)为主要结构单元和酚羟基来源,并具有两种不同的结构:4,4′,4″,4"'-(ethene-1,1,2,2-tetrayl)tetraaniline (TPE-4NH2) 和 4,4′,4″,4"'-(anthracene-9,10-diylidenebis(methanediylylidene))tetraaniline (Anthra-4Ph-4NH2) 两种不同的结构。合成的 Anthra-DHTP CMP 具有显著的 BET 表面积(BETSA),达到 431 m2 g-1。此外,它还具有出色的热稳定性,Td10 为 505 ℃。此外,在实际应用中,Anthra-DHTP CMP 还具有显著的二氧化碳捕获能力,在温度为 273 K、压力为 1 bar 时,捕获量为 1.85 mmol g-1。在三电极测试中,Anthra-DHTP CMP 在 0.5 A g-1 时的比电容高达 121 F g-1。此外,即使在经历 5000 次循环后,其电容保持率仍高达 79%。由于其出色的孔隙特性、丰富的 N 和 O 以及共轭特性,这种 Anthtra-DHTP CMP 在二氧化碳捕获和超级电容器应用方面具有巨大潜力。这项工作将为开发基于 DHTP-CMP 的材料及其与其他基团的后修饰铺平道路,从而促进其在光催化、光降解、锂电池应用等方面的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tetraphenylanthraquinone and Dihydroxybenzene-Tethered Conjugated Microporous Polymer for Enhanced CO2 Uptake and Supercapacitive Energy Storage

Conjugated microporous polymers (CMPs) feature extended excellent porosity properties and fully conjugated electronic systems, making them highly effective for several uses, including photocatalysis, dye adsorption, CO2 capture, supercapacitors, and so on. These polymers are known for their high specific surface area and adjustable porosity. To synthesize DHTP-CMPs (specifically TPE-DHTP CMP and Anthra-DHTP CMP) with abundant nitrogen (N) and oxygen (O) adsorption sites and spherical structures, we employed a straightforward Schiff-base [4 + 2] condensation reaction. This involved using 2,5-dihydroxyterephthalaldehyde (DHTP-2CHO) as the primary building block and phenolic OH group source, along with two distinct structures: 4,4′,4″,4”’-(ethene-1,1,2,2-tetrayl)tetraaniline (TPE-4NH2) and 4,4′,4″,4”’-(anthracene-9,10-diylidenebis(methanediylylidene))tetraaniline (Anthra-4Ph-4NH2). The synthesized Anthra-DHTP CMP had a remarkable BET surface area (BETSA) of 431 m2 g–1. Additionally, it exhibited outstanding thermal stability, as shown by a Td10 of 505 °C. Furthermore, for practical implementation, the Anthra-DHTP CMP demonstrates a significant capacity for capturing CO2, measuring 1.85 mmol g–1 at a temperature of 273 K and 1 bar. In a three-electrode test, the Anthra-DHTP CMP has a remarkable specific capacitance of 121 F g–1 at 0.5 A g–1. Furthermore, even after undergoing 5000 cycles, it maintains a capacitance retention rate of 79%. Due to their outstanding pore characteristics, abundant N and O, and conjugation properties, this Anthtra-DHTP CMP holds significant potential for CO2 capture and supercapacitor applications. This work will pave the way for the development of materials based on DHTP-CMPs and their postmodification with additional groups, facilitating their use in photocatalysis, photodegradation, lithium battery applications, and so on.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
Issue Editorial Masthead Issue Publication Information Revealing the Ultrafast Energy Transfer Pathways in Energetic Materials: Time-Dependent and Quantum State-Resolved Mechanistic Insights into Nonadiabatic Interband Transitions on a Semiconductor Surface Induced by Hydrogen Atom Collisions Sequence-Encoded Spatiotemporal Dependence of Viscoelasticity of Protein Condensates Using Computational Microrheology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1