Xun Zhao, Yihao Zhou, Aaron Li, Jing Xu, Shreesh Karjagi, Edward Hahm, Lara Rulloda, Justin Li, John Hollister, Pirouz Kavehpour, Jun Chen
{"title":"用于语音识别的自滤波液体声学传感器","authors":"Xun Zhao, Yihao Zhou, Aaron Li, Jing Xu, Shreesh Karjagi, Edward Hahm, Lara Rulloda, Justin Li, John Hollister, Pirouz Kavehpour, Jun Chen","doi":"10.1038/s41928-024-01196-y","DOIUrl":null,"url":null,"abstract":"Wearable acoustic sensors can be used for voice recognition. However, the capabilities of such devices, which are typically based on solid materials, are often restricted by ambient noise, motion artefacts and low conformability to the skin. Here we report a liquid acoustic sensor for voice recognition. The approach is based on a three-dimensional oriented and ramified magnetic network structure of neodymium–iron–boron magnetic nanoparticles suspended in a carrier fluid, which behaves like a permanent magnet. The sensor can discriminate small pressures (0.9 Pa), has a high signal-to-noise ratio (69.1 dB) and provides self-filtering capabilities that can remove low-frequency biomechanical motion artefact (less than 30 Hz). We use the liquid acoustic sensor—together with a machine learning algorithm—to create a wearable voice recognition system that offers a recognition accuracy of 99% in a noisy environment. An acoustic sensor that is based on a network of magnetic nanoparticles suspended in a carrier fluid can be used—together with a machine learning algorithm—to create a wearable voice recognition system with an accuracy of 99% in a noisy environment.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 10","pages":"924-932"},"PeriodicalIF":33.7000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A self-filtering liquid acoustic sensor for voice recognition\",\"authors\":\"Xun Zhao, Yihao Zhou, Aaron Li, Jing Xu, Shreesh Karjagi, Edward Hahm, Lara Rulloda, Justin Li, John Hollister, Pirouz Kavehpour, Jun Chen\",\"doi\":\"10.1038/s41928-024-01196-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wearable acoustic sensors can be used for voice recognition. However, the capabilities of such devices, which are typically based on solid materials, are often restricted by ambient noise, motion artefacts and low conformability to the skin. Here we report a liquid acoustic sensor for voice recognition. The approach is based on a three-dimensional oriented and ramified magnetic network structure of neodymium–iron–boron magnetic nanoparticles suspended in a carrier fluid, which behaves like a permanent magnet. The sensor can discriminate small pressures (0.9 Pa), has a high signal-to-noise ratio (69.1 dB) and provides self-filtering capabilities that can remove low-frequency biomechanical motion artefact (less than 30 Hz). We use the liquid acoustic sensor—together with a machine learning algorithm—to create a wearable voice recognition system that offers a recognition accuracy of 99% in a noisy environment. An acoustic sensor that is based on a network of magnetic nanoparticles suspended in a carrier fluid can be used—together with a machine learning algorithm—to create a wearable voice recognition system with an accuracy of 99% in a noisy environment.\",\"PeriodicalId\":19064,\"journal\":{\"name\":\"Nature Electronics\",\"volume\":\"7 10\",\"pages\":\"924-932\"},\"PeriodicalIF\":33.7000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.nature.com/articles/s41928-024-01196-y\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41928-024-01196-y","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A self-filtering liquid acoustic sensor for voice recognition
Wearable acoustic sensors can be used for voice recognition. However, the capabilities of such devices, which are typically based on solid materials, are often restricted by ambient noise, motion artefacts and low conformability to the skin. Here we report a liquid acoustic sensor for voice recognition. The approach is based on a three-dimensional oriented and ramified magnetic network structure of neodymium–iron–boron magnetic nanoparticles suspended in a carrier fluid, which behaves like a permanent magnet. The sensor can discriminate small pressures (0.9 Pa), has a high signal-to-noise ratio (69.1 dB) and provides self-filtering capabilities that can remove low-frequency biomechanical motion artefact (less than 30 Hz). We use the liquid acoustic sensor—together with a machine learning algorithm—to create a wearable voice recognition system that offers a recognition accuracy of 99% in a noisy environment. An acoustic sensor that is based on a network of magnetic nanoparticles suspended in a carrier fluid can be used—together with a machine learning algorithm—to create a wearable voice recognition system with an accuracy of 99% in a noisy environment.
期刊介绍:
Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research.
The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society.
Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting.
In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.