功能性聚磷酯衍生的先进生物材料:合成、特性和生物医学应用

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-09-23 DOI:10.1021/acsami.4c11899
Jintao Li, Ying Hao, Hairong Wang, Mingzu Zhang, Jinlin He, Peihong Ni
{"title":"功能性聚磷酯衍生的先进生物材料:合成、特性和生物医学应用","authors":"Jintao Li, Ying Hao, Hairong Wang, Mingzu Zhang, Jinlin He, Peihong Ni","doi":"10.1021/acsami.4c11899","DOIUrl":null,"url":null,"abstract":"Polyphosphoesters (PPEs) represent an innovative class of biodegradable polymers, with the phosphate ester serving as the core repeating unit of their polymeric backbone. Recently, biomaterials derived from functionalized PPEs have garnered significant interest in biomedical applications because of their commendable biocompatibility, biodegradability, and the capacity for functional modification. This review commences with a brief overview of synthesis methodologies and the distinctive properties of PPEs, including thermoresponsiveness, degradability, stealth effect, and biocompatibility. Subsequently, the review delves into the latest applications of PPEs-based nanocarriers for drug or gene delivery and PPEs-based polymeric prodrugs and scaffolds in the biomedical field, presenting several illustrative examples for each application. By encapsulating the advancements of recent years, this review aims to offer an enhanced understanding and serve as a reference for the synthesis and biomedical applications of functional PPEs.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced Biomaterials Derived from Functional Polyphosphoesters: Synthesis, Properties, and Biomedical Applications\",\"authors\":\"Jintao Li, Ying Hao, Hairong Wang, Mingzu Zhang, Jinlin He, Peihong Ni\",\"doi\":\"10.1021/acsami.4c11899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polyphosphoesters (PPEs) represent an innovative class of biodegradable polymers, with the phosphate ester serving as the core repeating unit of their polymeric backbone. Recently, biomaterials derived from functionalized PPEs have garnered significant interest in biomedical applications because of their commendable biocompatibility, biodegradability, and the capacity for functional modification. This review commences with a brief overview of synthesis methodologies and the distinctive properties of PPEs, including thermoresponsiveness, degradability, stealth effect, and biocompatibility. Subsequently, the review delves into the latest applications of PPEs-based nanocarriers for drug or gene delivery and PPEs-based polymeric prodrugs and scaffolds in the biomedical field, presenting several illustrative examples for each application. By encapsulating the advancements of recent years, this review aims to offer an enhanced understanding and serve as a reference for the synthesis and biomedical applications of functional PPEs.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c11899\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c11899","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

聚磷酸酯(PPE)是一类创新的可生物降解聚合物,磷酸酯是其聚合物骨架的核心重复单元。最近,由功能化 PPE 衍生的生物材料在生物医学应用领域引起了极大的兴趣,因为它们具有良好的生物相容性、生物降解性和功能修饰能力。本综述首先简要介绍了 PPE 的合成方法和独特性质,包括热致性、可降解性、隐形效应和生物相容性。随后,综述深入探讨了基于 PPE 的纳米载体在生物医学领域的最新应用,包括用于药物或基因递送的纳米载体,以及基于 PPE 的聚合物原药和支架,并针对每种应用介绍了几个示例。通过总结近年来的研究进展,本综述旨在加深人们对功能性 PPE 的理解,并为功能性 PPE 的合成和生物医学应用提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advanced Biomaterials Derived from Functional Polyphosphoesters: Synthesis, Properties, and Biomedical Applications
Polyphosphoesters (PPEs) represent an innovative class of biodegradable polymers, with the phosphate ester serving as the core repeating unit of their polymeric backbone. Recently, biomaterials derived from functionalized PPEs have garnered significant interest in biomedical applications because of their commendable biocompatibility, biodegradability, and the capacity for functional modification. This review commences with a brief overview of synthesis methodologies and the distinctive properties of PPEs, including thermoresponsiveness, degradability, stealth effect, and biocompatibility. Subsequently, the review delves into the latest applications of PPEs-based nanocarriers for drug or gene delivery and PPEs-based polymeric prodrugs and scaffolds in the biomedical field, presenting several illustrative examples for each application. By encapsulating the advancements of recent years, this review aims to offer an enhanced understanding and serve as a reference for the synthesis and biomedical applications of functional PPEs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Silk Flocked Flexible Sensor Capable of Wide-Range and Sensitive Pressure Perception Wnt 3a-Modified Scaffolds Improve Nerve Regeneration by Boosting Schwann Cell Function Zr-Doping Strategy of High-Quality Cu2O/β-Ga2O3 Heterojunction for Ultrahigh-Performance Solar-Blind Ultraviolet Photodetection Promoting Reaction Kinetics of the Air Cathode for Neutral Zinc–Air Batteries by the Photothermal Effect Regiospecific Incorporation of Fluorine Atoms in Polythiophene Derivatives for Efficient Organic Solar Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1