Meiyuan Chen, Ziyang Huang, Yi Chen, Xiaochuan Wang, Xiaojun Ye, Wenjie Wu
{"title":"基于任务 fMRI 的重复经颅磁刺激个体化点可改善中风后吞咽困难患者的吞咽功能。","authors":"Meiyuan Chen, Ziyang Huang, Yi Chen, Xiaochuan Wang, Xiaojun Ye, Wenjie Wu","doi":"10.1089/brain.2024.0021","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> Functional magnetic resonance imaging (fMRI) has not previously been used to localize the swallowing functional area in repetitive transcranial magnetic stimulation (rTMS) treatment for poststroke dysphagia; Traditionally, the target area for rTMS is the hotspot, which is defined as the specific region of the brain identified as the optimal location for transcranial magnetic stimulation (TMS). This study aims to compare the network differences between the TMS hotspot and the saliva swallowing fMRI activation to determine the better rTMS treatment site and investigate changes in functional connectivity related to poststroke dysphagia using resting-state fMRI. <b><i>Methods:</i></b> Using an information-based approach, we conducted a single case study to explore neural functional connectivity in a patient with poststroke dysphagia before, immediately after rTMS, and 4 weeks after rTMS intervention. A total of 20 healthy participants underwent fMRI and TMS hotspot localization as a control group. Neural network alterations were assessed, and functional connections related to poststroke dysphagia were examined using resting-state fMRI. <b><i>Results:</i></b> Compared to the TMS-induced hotspots, the fMRI activation peaks were located significantly more posteriorly and exhibited stronger functional connectivity with bilateral postcentral gyri. Following rTMS treatment, this patient developed functional connection between the brainstem and the bilateral insula, caudate, anterior cingulate cortex, and cerebellum. <b><i>Conclusion:</i></b> The saliva swallowing fMRI activation peaks show more intense functional connectivity with bilateral postcentral gyri compared to the TMS hotspots. Activation peak-guided rTMS treatment improves swallowing function in poststroke dysphagia. This study proposes a novel and potentially more efficacious therapeutic target for rTMS, expanding its therapeutic options for treating poststroke dysphagia.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":"513-526"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Repetitive Transcranial Magnetic Stimulation on Individualized Spots Based on Task functional Magnetic Resonance Imaging Improves Swallowing Function in Poststroke Dysphagia.\",\"authors\":\"Meiyuan Chen, Ziyang Huang, Yi Chen, Xiaochuan Wang, Xiaojun Ye, Wenjie Wu\",\"doi\":\"10.1089/brain.2024.0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Background:</i></b> Functional magnetic resonance imaging (fMRI) has not previously been used to localize the swallowing functional area in repetitive transcranial magnetic stimulation (rTMS) treatment for poststroke dysphagia; Traditionally, the target area for rTMS is the hotspot, which is defined as the specific region of the brain identified as the optimal location for transcranial magnetic stimulation (TMS). This study aims to compare the network differences between the TMS hotspot and the saliva swallowing fMRI activation to determine the better rTMS treatment site and investigate changes in functional connectivity related to poststroke dysphagia using resting-state fMRI. <b><i>Methods:</i></b> Using an information-based approach, we conducted a single case study to explore neural functional connectivity in a patient with poststroke dysphagia before, immediately after rTMS, and 4 weeks after rTMS intervention. A total of 20 healthy participants underwent fMRI and TMS hotspot localization as a control group. Neural network alterations were assessed, and functional connections related to poststroke dysphagia were examined using resting-state fMRI. <b><i>Results:</i></b> Compared to the TMS-induced hotspots, the fMRI activation peaks were located significantly more posteriorly and exhibited stronger functional connectivity with bilateral postcentral gyri. Following rTMS treatment, this patient developed functional connection between the brainstem and the bilateral insula, caudate, anterior cingulate cortex, and cerebellum. <b><i>Conclusion:</i></b> The saliva swallowing fMRI activation peaks show more intense functional connectivity with bilateral postcentral gyri compared to the TMS hotspots. Activation peak-guided rTMS treatment improves swallowing function in poststroke dysphagia. This study proposes a novel and potentially more efficacious therapeutic target for rTMS, expanding its therapeutic options for treating poststroke dysphagia.</p>\",\"PeriodicalId\":9155,\"journal\":{\"name\":\"Brain connectivity\",\"volume\":\" \",\"pages\":\"513-526\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain connectivity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/brain.2024.0021\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain connectivity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/brain.2024.0021","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Repetitive Transcranial Magnetic Stimulation on Individualized Spots Based on Task functional Magnetic Resonance Imaging Improves Swallowing Function in Poststroke Dysphagia.
Background: Functional magnetic resonance imaging (fMRI) has not previously been used to localize the swallowing functional area in repetitive transcranial magnetic stimulation (rTMS) treatment for poststroke dysphagia; Traditionally, the target area for rTMS is the hotspot, which is defined as the specific region of the brain identified as the optimal location for transcranial magnetic stimulation (TMS). This study aims to compare the network differences between the TMS hotspot and the saliva swallowing fMRI activation to determine the better rTMS treatment site and investigate changes in functional connectivity related to poststroke dysphagia using resting-state fMRI. Methods: Using an information-based approach, we conducted a single case study to explore neural functional connectivity in a patient with poststroke dysphagia before, immediately after rTMS, and 4 weeks after rTMS intervention. A total of 20 healthy participants underwent fMRI and TMS hotspot localization as a control group. Neural network alterations were assessed, and functional connections related to poststroke dysphagia were examined using resting-state fMRI. Results: Compared to the TMS-induced hotspots, the fMRI activation peaks were located significantly more posteriorly and exhibited stronger functional connectivity with bilateral postcentral gyri. Following rTMS treatment, this patient developed functional connection between the brainstem and the bilateral insula, caudate, anterior cingulate cortex, and cerebellum. Conclusion: The saliva swallowing fMRI activation peaks show more intense functional connectivity with bilateral postcentral gyri compared to the TMS hotspots. Activation peak-guided rTMS treatment improves swallowing function in poststroke dysphagia. This study proposes a novel and potentially more efficacious therapeutic target for rTMS, expanding its therapeutic options for treating poststroke dysphagia.
期刊介绍:
Brain Connectivity provides groundbreaking findings in the rapidly advancing field of connectivity research at the systems and network levels. The Journal disseminates information on brain mapping, modeling, novel research techniques, new imaging modalities, preclinical animal studies, and the translation of research discoveries from the laboratory to the clinic.
This essential journal fosters the application of basic biological discoveries and contributes to the development of novel diagnostic and therapeutic interventions to recognize and treat a broad range of neurodegenerative and psychiatric disorders such as: Alzheimer’s disease, attention-deficit hyperactivity disorder, posttraumatic stress disorder, epilepsy, traumatic brain injury, stroke, dementia, and depression.