Lauren May, Bin Hu, Preksha Jerajani, Akash Jagdeesh, Ohud Alhawiti, Lillian Cai, Nina Semenova, Chunqing Guo, Madison Isbell, Xiaoyan Deng, Anthony C Faber, Raghavendra Pillappa, Dipankar Bandyopadhyay, Xiang-Yang Wang, Alexander Neuwelt, Jennifer Koblinski, Paula D Bos, Howard Li, Rebecca Martin, Joseph W Landry
{"title":"先天性免疫系统和TRAIL-BCL-XL轴介导肺癌的性别差异并使女性更易接受治疗","authors":"Lauren May, Bin Hu, Preksha Jerajani, Akash Jagdeesh, Ohud Alhawiti, Lillian Cai, Nina Semenova, Chunqing Guo, Madison Isbell, Xiaoyan Deng, Anthony C Faber, Raghavendra Pillappa, Dipankar Bandyopadhyay, Xiang-Yang Wang, Alexander Neuwelt, Jennifer Koblinski, Paula D Bos, Howard Li, Rebecca Martin, Joseph W Landry","doi":"10.1158/0008-5472.CAN-24-0585","DOIUrl":null,"url":null,"abstract":"<p><p>There is a significant sex bias in lung cancer, with males showing increased mortality compared with females. A better mechanistic understanding of these differences could help identify therapeutic targets to personalize cancer therapies to each sex. After observing a clear sex bias in humanized mice, with male patient-derived xenograft lung tumors being more progressive and deadlier than female patient-derived xenograft lung tumors, we identified mouse tumor models of lung cancer with the same sex bias. This sex bias was not observed in models of breast, colon, melanoma, and renal cancers. In vivo, the sex bias in growth and lethality required intact ovaries, functional innate NK cells and monocytes/macrophages, and the activating receptor NKG2D. Ex vivo cell culture models were sensitized to the anticancer effects of NKG2D-mediated NK cell and macrophage killing through the TRAIL-Bcl-XL axis when cultured with serum from female mice with intact ovaries. In both flank and orthotopic models, the Bcl-XL inhibitor navitoclax (ABT-263) improved tumor growth control in female mice and required NK cells, macrophages, and the TRAIL signaling pathway. This research suggests that navitoclax and TRAIL pathway agonists could be used as a personalized therapy to improve outcomes in women with lung cancer. Significance: Lung cancers in females are more susceptible to killing through a TRAIL-Bcl-XL axis, indicating that targeting this axis therapeutically could represent a personalized approach to treat female patients with lung cancer.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":"4140-4155"},"PeriodicalIF":12.5000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11649478/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Innate Immune System and the TRAIL-Bcl-XL Axis Mediate a Sex Bias in Lung Cancer and Confer a Therapeutic Vulnerability in Females.\",\"authors\":\"Lauren May, Bin Hu, Preksha Jerajani, Akash Jagdeesh, Ohud Alhawiti, Lillian Cai, Nina Semenova, Chunqing Guo, Madison Isbell, Xiaoyan Deng, Anthony C Faber, Raghavendra Pillappa, Dipankar Bandyopadhyay, Xiang-Yang Wang, Alexander Neuwelt, Jennifer Koblinski, Paula D Bos, Howard Li, Rebecca Martin, Joseph W Landry\",\"doi\":\"10.1158/0008-5472.CAN-24-0585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is a significant sex bias in lung cancer, with males showing increased mortality compared with females. A better mechanistic understanding of these differences could help identify therapeutic targets to personalize cancer therapies to each sex. After observing a clear sex bias in humanized mice, with male patient-derived xenograft lung tumors being more progressive and deadlier than female patient-derived xenograft lung tumors, we identified mouse tumor models of lung cancer with the same sex bias. This sex bias was not observed in models of breast, colon, melanoma, and renal cancers. In vivo, the sex bias in growth and lethality required intact ovaries, functional innate NK cells and monocytes/macrophages, and the activating receptor NKG2D. Ex vivo cell culture models were sensitized to the anticancer effects of NKG2D-mediated NK cell and macrophage killing through the TRAIL-Bcl-XL axis when cultured with serum from female mice with intact ovaries. In both flank and orthotopic models, the Bcl-XL inhibitor navitoclax (ABT-263) improved tumor growth control in female mice and required NK cells, macrophages, and the TRAIL signaling pathway. This research suggests that navitoclax and TRAIL pathway agonists could be used as a personalized therapy to improve outcomes in women with lung cancer. Significance: Lung cancers in females are more susceptible to killing through a TRAIL-Bcl-XL axis, indicating that targeting this axis therapeutically could represent a personalized approach to treat female patients with lung cancer.</p>\",\"PeriodicalId\":9441,\"journal\":{\"name\":\"Cancer research\",\"volume\":\" \",\"pages\":\"4140-4155\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11649478/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/0008-5472.CAN-24-0585\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.CAN-24-0585","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
The Innate Immune System and the TRAIL-Bcl-XL Axis Mediate a Sex Bias in Lung Cancer and Confer a Therapeutic Vulnerability in Females.
There is a significant sex bias in lung cancer, with males showing increased mortality compared with females. A better mechanistic understanding of these differences could help identify therapeutic targets to personalize cancer therapies to each sex. After observing a clear sex bias in humanized mice, with male patient-derived xenograft lung tumors being more progressive and deadlier than female patient-derived xenograft lung tumors, we identified mouse tumor models of lung cancer with the same sex bias. This sex bias was not observed in models of breast, colon, melanoma, and renal cancers. In vivo, the sex bias in growth and lethality required intact ovaries, functional innate NK cells and monocytes/macrophages, and the activating receptor NKG2D. Ex vivo cell culture models were sensitized to the anticancer effects of NKG2D-mediated NK cell and macrophage killing through the TRAIL-Bcl-XL axis when cultured with serum from female mice with intact ovaries. In both flank and orthotopic models, the Bcl-XL inhibitor navitoclax (ABT-263) improved tumor growth control in female mice and required NK cells, macrophages, and the TRAIL signaling pathway. This research suggests that navitoclax and TRAIL pathway agonists could be used as a personalized therapy to improve outcomes in women with lung cancer. Significance: Lung cancers in females are more susceptible to killing through a TRAIL-Bcl-XL axis, indicating that targeting this axis therapeutically could represent a personalized approach to treat female patients with lung cancer.
期刊介绍:
Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research.
With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445.
Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.