评估 ChatGPT 在 MKSAP 心脏病学委员会复习题中的表现。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-09-19 DOI:10.1016/j.ijcard.2024.132576
Stefan Milutinovic , Marija Petrovic , Dustin Begosh-Mayne , Juan Lopez-Mattei , Richard A. Chazal , Malissa J. Wood , Ricardo O. Escarcega
{"title":"评估 ChatGPT 在 MKSAP 心脏病学委员会复习题中的表现。","authors":"Stefan Milutinovic ,&nbsp;Marija Petrovic ,&nbsp;Dustin Begosh-Mayne ,&nbsp;Juan Lopez-Mattei ,&nbsp;Richard A. Chazal ,&nbsp;Malissa J. Wood ,&nbsp;Ricardo O. Escarcega","doi":"10.1016/j.ijcard.2024.132576","DOIUrl":null,"url":null,"abstract":"<div><div>Chat Generative Pretrained Transformer (ChatGPT) is a natural language processing tool created by OpenAI. Much of the discussion regarding artificial intelligence (AI) in medicine is the ability of the language to enhance medical practice, improve efficiency and decrease errors. The objective of this study was to analyze the ability of ChatGPT to answer board-style cardiovascular medicine questions by using the <em>Medical Knowledge Self-Assessment Program</em> (MKSAP).The study evaluated the performance of ChatGPT (versions 3.5 and 4), alongside internal medicine residents and internal medicine and cardiology attendings, in answering 98 multiple-choice questions (MCQs) from the Cardiovascular Medicine Chapter of MKSAP. ChatGPT-4 demonstrated an accuracy of 74.5 %, comparable to internal medicine (IM) intern (63.3 %), senior resident (63.3 %), internal medicine attending physician (62.2 %), and ChatGPT-3.5 (64.3 %) but significantly lower than cardiology attending physician (85.7 %). Subcategory analysis revealed no statistical difference between ChatGPT and physicians, except in valvular heart disease where cardiology attending outperformed ChatGPT (<em>p</em> = 0.031) for version 3.5, and for heart failure (<em>p</em> = 0.046) where ChatGPT-4 outperformed senior resident. While ChatGPT shows promise in certain subcategories, in order to establish AI as a reliable educational tool for medical professionals, performance of ChatGPT will likely need to surpass the accuracy of instructors, ideally achieving the near-perfect score on posed questions.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating Performance of ChatGPT on MKSAP Cardiology Board Review Questions\",\"authors\":\"Stefan Milutinovic ,&nbsp;Marija Petrovic ,&nbsp;Dustin Begosh-Mayne ,&nbsp;Juan Lopez-Mattei ,&nbsp;Richard A. Chazal ,&nbsp;Malissa J. Wood ,&nbsp;Ricardo O. Escarcega\",\"doi\":\"10.1016/j.ijcard.2024.132576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Chat Generative Pretrained Transformer (ChatGPT) is a natural language processing tool created by OpenAI. Much of the discussion regarding artificial intelligence (AI) in medicine is the ability of the language to enhance medical practice, improve efficiency and decrease errors. The objective of this study was to analyze the ability of ChatGPT to answer board-style cardiovascular medicine questions by using the <em>Medical Knowledge Self-Assessment Program</em> (MKSAP).The study evaluated the performance of ChatGPT (versions 3.5 and 4), alongside internal medicine residents and internal medicine and cardiology attendings, in answering 98 multiple-choice questions (MCQs) from the Cardiovascular Medicine Chapter of MKSAP. ChatGPT-4 demonstrated an accuracy of 74.5 %, comparable to internal medicine (IM) intern (63.3 %), senior resident (63.3 %), internal medicine attending physician (62.2 %), and ChatGPT-3.5 (64.3 %) but significantly lower than cardiology attending physician (85.7 %). Subcategory analysis revealed no statistical difference between ChatGPT and physicians, except in valvular heart disease where cardiology attending outperformed ChatGPT (<em>p</em> = 0.031) for version 3.5, and for heart failure (<em>p</em> = 0.046) where ChatGPT-4 outperformed senior resident. While ChatGPT shows promise in certain subcategories, in order to establish AI as a reliable educational tool for medical professionals, performance of ChatGPT will likely need to surpass the accuracy of instructors, ideally achieving the near-perfect score on posed questions.</div></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167527324011987\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167527324011987","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

聊天生成预训练转换器(ChatGPT)是 OpenAI 开发的一种自然语言处理工具。关于人工智能(AI)在医学中的应用,人们讨论最多的是人工智能语言是否能增强医疗实践、提高效率和减少错误。本研究的目的是分析 ChatGPT 通过使用医学知识自我评估程序(MKSAP)回答董事会式心血管医学问题的能力。研究评估了 ChatGPT(3.5 版和 4 版)与内科住院医师、内科和心脏病科主治医师一起回答 MKSAP 心血管医学章节中 98 道多选题(MCQ)的表现。ChatGPT-4 的准确率为 74.5%,与内科实习生(63.3%)、高级住院医师(63.3%)、内科主治医师(62.2%)和 ChatGPT-3.5 (64.3%)相当,但明显低于心脏病学主治医师(85.7%)。子类别分析显示,ChatGPT 和医生之间没有统计学差异,但在瓣膜性心脏病方面,心脏病学主治医师的成绩优于 ChatGPT 3.5 版(p = 0.031),在心力衰竭方面(p = 0.046),ChatGPT-4 的成绩优于资深住院医师。虽然 ChatGPT 在某些子类别中显示出前景,但要将人工智能确立为医学专业人员的可靠教育工具,ChatGPT 的表现可能需要超过指导员的准确性,最好在提出的问题上达到接近满分的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating Performance of ChatGPT on MKSAP Cardiology Board Review Questions
Chat Generative Pretrained Transformer (ChatGPT) is a natural language processing tool created by OpenAI. Much of the discussion regarding artificial intelligence (AI) in medicine is the ability of the language to enhance medical practice, improve efficiency and decrease errors. The objective of this study was to analyze the ability of ChatGPT to answer board-style cardiovascular medicine questions by using the Medical Knowledge Self-Assessment Program (MKSAP).The study evaluated the performance of ChatGPT (versions 3.5 and 4), alongside internal medicine residents and internal medicine and cardiology attendings, in answering 98 multiple-choice questions (MCQs) from the Cardiovascular Medicine Chapter of MKSAP. ChatGPT-4 demonstrated an accuracy of 74.5 %, comparable to internal medicine (IM) intern (63.3 %), senior resident (63.3 %), internal medicine attending physician (62.2 %), and ChatGPT-3.5 (64.3 %) but significantly lower than cardiology attending physician (85.7 %). Subcategory analysis revealed no statistical difference between ChatGPT and physicians, except in valvular heart disease where cardiology attending outperformed ChatGPT (p = 0.031) for version 3.5, and for heart failure (p = 0.046) where ChatGPT-4 outperformed senior resident. While ChatGPT shows promise in certain subcategories, in order to establish AI as a reliable educational tool for medical professionals, performance of ChatGPT will likely need to surpass the accuracy of instructors, ideally achieving the near-perfect score on posed questions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1