炔诺酮可减轻 LPS 诱导的 RAW264.7 细胞和卵清蛋白诱导的哮喘小鼠体内的炎症细胞因子。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-09-22 DOI:10.1002/jbt.23836
Junyan Chen, Xiaohong Liu
{"title":"炔诺酮可减轻 LPS 诱导的 RAW264.7 细胞和卵清蛋白诱导的哮喘小鼠体内的炎症细胞因子。","authors":"Junyan Chen,&nbsp;Xiaohong Liu","doi":"10.1002/jbt.23836","DOIUrl":null,"url":null,"abstract":"<p>This study examines the anti-inflammatory activity of cynaropicrin against lipopolysaccharide (LPS) in vitro and ovalbumin (OVA)-challenged asthma in mice. Cynaropicrin's antimicrobial effects were tested on <i>Escherichia coli (E. coli)</i> and <i>Streptococcus pyogenes (S. pyogenes)</i> using the disc diffusion technique. Cytotoxicity was assessed with an (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay. The anti-inflammatory property was evaluated in LPS-induced RAW264.7 cells, while OVA-challenged asthmatic mice were treated with 10 mg/kg of cynaropicrin. Key inflammatory and antioxidant markers were quantified, and lung histology was examined to confirm therapeutic roles. The antimicrobial studies proved that cynaropicrin effectively inhibited the growth of <i>E. coli</i> and <i>S. pyogenes</i>. Cynaropicrin displayed no cytotoxicity on RAW264.7 cells. Furthermore, it significantly inhibited inflammatory cytokine synthesis upon LPS induction. Cynaropicrin treatment decreased the inflammatory cell counts and also suppressed specific allergic markers in OVA-challenged mice. It also decreased nitric oxide and myeloperoxidase levels and reduced pulmonary edema. Cynaropicrin increased antioxidant levels and decreased proinflammatory cytokines in the asthmatic mice. Lung histological examination confirms the ameliorative potency of cynaropicrin against OVA-induced asthmatic pulmonary inflammation in mice. Our findings suggest cynaropicrin possesses significant ameliorative potency against allergen-induced pulmonary inflammation.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cynaropicrin attenuates inflammatory cytokines in LPS-induced RAW264.7 cells and ovalbumin-induced asthmatic mice\",\"authors\":\"Junyan Chen,&nbsp;Xiaohong Liu\",\"doi\":\"10.1002/jbt.23836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study examines the anti-inflammatory activity of cynaropicrin against lipopolysaccharide (LPS) in vitro and ovalbumin (OVA)-challenged asthma in mice. Cynaropicrin's antimicrobial effects were tested on <i>Escherichia coli (E. coli)</i> and <i>Streptococcus pyogenes (S. pyogenes)</i> using the disc diffusion technique. Cytotoxicity was assessed with an (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay. The anti-inflammatory property was evaluated in LPS-induced RAW264.7 cells, while OVA-challenged asthmatic mice were treated with 10 mg/kg of cynaropicrin. Key inflammatory and antioxidant markers were quantified, and lung histology was examined to confirm therapeutic roles. The antimicrobial studies proved that cynaropicrin effectively inhibited the growth of <i>E. coli</i> and <i>S. pyogenes</i>. Cynaropicrin displayed no cytotoxicity on RAW264.7 cells. Furthermore, it significantly inhibited inflammatory cytokine synthesis upon LPS induction. Cynaropicrin treatment decreased the inflammatory cell counts and also suppressed specific allergic markers in OVA-challenged mice. It also decreased nitric oxide and myeloperoxidase levels and reduced pulmonary edema. Cynaropicrin increased antioxidant levels and decreased proinflammatory cytokines in the asthmatic mice. Lung histological examination confirms the ameliorative potency of cynaropicrin against OVA-induced asthmatic pulmonary inflammation in mice. Our findings suggest cynaropicrin possesses significant ameliorative potency against allergen-induced pulmonary inflammation.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbt.23836\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.23836","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了犬尿苷对体外脂多糖(LPS)和卵清蛋白(OVA)诱导的小鼠哮喘的抗炎活性。使用圆盘扩散技术测试了犬尿苷对大肠杆菌(E. coli)和化脓性链球菌(S. pyogenes)的抗菌效果。细胞毒性采用(3-(4,5-二甲基噻唑基-2)-2,5-二苯基溴化四氮唑)测定法进行评估。在 LPS 诱导的 RAW264.7 细胞中对抗炎性进行了评估,而 OVA 攻击性哮喘小鼠则接受了 10 毫克/千克的卡诺匹克林治疗。对主要的炎症和抗氧化标记物进行了量化,并对肺组织学进行了检查,以确认其治疗作用。抗菌研究证明,卡泊三醇能有效抑制大肠杆菌和化脓性链球菌的生长。卡马西平对 RAW264.7 细胞无细胞毒性。此外,它还能明显抑制 LPS 诱导的炎症细胞因子的合成。在 OVA 攻击小鼠体内,Cynaropicrin 处理可减少炎症细胞数量并抑制特定的过敏标记物。它还能降低一氧化氮和髓过氧化物酶水平,减轻肺水肿。炔诺酮可提高哮喘小鼠的抗氧化水平,减少促炎细胞因子。肺组织学检查证实了卡那霉素对 OVA 诱导的小鼠哮喘性肺部炎症的改善作用。我们的研究结果表明,卡泊三醇对过敏原诱发的肺部炎症具有显著的改善作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cynaropicrin attenuates inflammatory cytokines in LPS-induced RAW264.7 cells and ovalbumin-induced asthmatic mice

This study examines the anti-inflammatory activity of cynaropicrin against lipopolysaccharide (LPS) in vitro and ovalbumin (OVA)-challenged asthma in mice. Cynaropicrin's antimicrobial effects were tested on Escherichia coli (E. coli) and Streptococcus pyogenes (S. pyogenes) using the disc diffusion technique. Cytotoxicity was assessed with an (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay. The anti-inflammatory property was evaluated in LPS-induced RAW264.7 cells, while OVA-challenged asthmatic mice were treated with 10 mg/kg of cynaropicrin. Key inflammatory and antioxidant markers were quantified, and lung histology was examined to confirm therapeutic roles. The antimicrobial studies proved that cynaropicrin effectively inhibited the growth of E. coli and S. pyogenes. Cynaropicrin displayed no cytotoxicity on RAW264.7 cells. Furthermore, it significantly inhibited inflammatory cytokine synthesis upon LPS induction. Cynaropicrin treatment decreased the inflammatory cell counts and also suppressed specific allergic markers in OVA-challenged mice. It also decreased nitric oxide and myeloperoxidase levels and reduced pulmonary edema. Cynaropicrin increased antioxidant levels and decreased proinflammatory cytokines in the asthmatic mice. Lung histological examination confirms the ameliorative potency of cynaropicrin against OVA-induced asthmatic pulmonary inflammation in mice. Our findings suggest cynaropicrin possesses significant ameliorative potency against allergen-induced pulmonary inflammation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1