小儿髓母细胞瘤质子颅椎体照射的几何靶缘策略。

IF 1.9 4区 医学 Q2 BIOLOGY Journal of Radiation Research Pub Date : 2024-09-24 DOI:10.1093/jrr/rrae066
Takaaki Yoshimura, Keigo Kondo, Takayuki Hashimoto, Kentaro Nishioka, Takashi Mori, Takahiro Kanehira, Taeko Matsuura, Seishin Takao, Hiroshi Tamura, Takuya Matsumoto, Kenneth Sutherland, Hidefumi Aoyama
{"title":"小儿髓母细胞瘤质子颅椎体照射的几何靶缘策略。","authors":"Takaaki Yoshimura, Keigo Kondo, Takayuki Hashimoto, Kentaro Nishioka, Takashi Mori, Takahiro Kanehira, Taeko Matsuura, Seishin Takao, Hiroshi Tamura, Takuya Matsumoto, Kenneth Sutherland, Hidefumi Aoyama","doi":"10.1093/jrr/rrae066","DOIUrl":null,"url":null,"abstract":"<p><p>In proton craniospinal irradiation (CSI) for skeletally immature pediatric patients, a treatment plan should be developed to ensure that the dose is uniformly delivered to all vertebrae, considering the effects on bone growth balance. The technical (t) clinical target volume (CTV) is conventionally set by manually expanding the CTV from the entire intracranial space and thecal sac, based on the physician's experience. However, there are differences in contouring methods among physicians. Therefore, we aimed to propose a new geometric target margin strategy. Nine pediatric patients with medulloblastoma who underwent proton CSI were enrolled. We measured the following water equivalent lengths for each vertebra in each patient: body surface to the dorsal spinal canal, vertebral limbus, ventral spinal canal and spinous processes. A simulated tCTV (stCTV) was created by assigning geometric margins to the spinal canal using the measurement results such that the vertebral limb and dose distribution coincided with a margin assigned to account for the uncertainty of the proton beam range. The stCTV with a growth factor (correlation between body surface area and age) and tCTV were compared and evaluated. The median values of each index for cervical, thoracic and lumber spine were: the Hausdorff distance, 9.14, 9.84 and 9.77 mm; mean distance-to-agreement, 3.26, 2.65 and 2.64 mm; Dice coefficient, 0.84, 0.81 and 0.82 and Jaccard coefficient, 0.50, 0.60 and 0.62, respectively. The geometric target margin setting method used in this study was useful for creating an stCTV to ensure consistent and uniform planning.</p>","PeriodicalId":16922,"journal":{"name":"Journal of Radiation Research","volume":" ","pages":"676-688"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420849/pdf/","citationCount":"0","resultStr":"{\"title\":\"Geometric target margin strategy of proton craniospinal irradiation for pediatric medulloblastoma.\",\"authors\":\"Takaaki Yoshimura, Keigo Kondo, Takayuki Hashimoto, Kentaro Nishioka, Takashi Mori, Takahiro Kanehira, Taeko Matsuura, Seishin Takao, Hiroshi Tamura, Takuya Matsumoto, Kenneth Sutherland, Hidefumi Aoyama\",\"doi\":\"10.1093/jrr/rrae066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In proton craniospinal irradiation (CSI) for skeletally immature pediatric patients, a treatment plan should be developed to ensure that the dose is uniformly delivered to all vertebrae, considering the effects on bone growth balance. The technical (t) clinical target volume (CTV) is conventionally set by manually expanding the CTV from the entire intracranial space and thecal sac, based on the physician's experience. However, there are differences in contouring methods among physicians. Therefore, we aimed to propose a new geometric target margin strategy. Nine pediatric patients with medulloblastoma who underwent proton CSI were enrolled. We measured the following water equivalent lengths for each vertebra in each patient: body surface to the dorsal spinal canal, vertebral limbus, ventral spinal canal and spinous processes. A simulated tCTV (stCTV) was created by assigning geometric margins to the spinal canal using the measurement results such that the vertebral limb and dose distribution coincided with a margin assigned to account for the uncertainty of the proton beam range. The stCTV with a growth factor (correlation between body surface area and age) and tCTV were compared and evaluated. The median values of each index for cervical, thoracic and lumber spine were: the Hausdorff distance, 9.14, 9.84 and 9.77 mm; mean distance-to-agreement, 3.26, 2.65 and 2.64 mm; Dice coefficient, 0.84, 0.81 and 0.82 and Jaccard coefficient, 0.50, 0.60 and 0.62, respectively. The geometric target margin setting method used in this study was useful for creating an stCTV to ensure consistent and uniform planning.</p>\",\"PeriodicalId\":16922,\"journal\":{\"name\":\"Journal of Radiation Research\",\"volume\":\" \",\"pages\":\"676-688\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420849/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Radiation Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jrr/rrae066\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jrr/rrae066","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在对骨骼尚未发育成熟的儿童患者进行质子颅椎体照射(CSI)时,应考虑到对骨骼生长平衡的影响,制定治疗计划以确保剂量均匀地照射到所有椎体。传统的技术(t)临床目标量(CTV)是根据医生的经验,从整个颅内间隙和椎管囊手动扩大 CTV 来设定的。然而,不同医生的轮廓绘制方法存在差异。因此,我们旨在提出一种新的几何目标边缘策略。九名儿科髓母细胞瘤患者接受了质子 CSI 治疗。我们测量了每位患者每个椎体的以下水当量长度:体表到背侧椎管、椎缘、腹侧椎管和棘突。利用测量结果为椎管分配几何余量,使椎体肢体和剂量分布与为考虑质子束射程的不确定性而分配的余量相吻合,从而创建了模拟 tCTV(stCTV)。对带有生长因子(体表面积与年龄之间的相关性)的 stCTV 和 tCTV 进行了比较和评估。颈椎、胸椎和腰椎各项指标的中值分别为:豪斯多夫距离(9.14、9.84 和 9.77 毫米);平均一致距离(3.26、2.65 和 2.64 毫米);狄斯系数(0.84、0.81 和 0.82)和雅卡德系数(0.50、0.60 和 0.62)。本研究中使用的几何目标余量设定方法有助于创建 stCTV,确保规划的一致性和统一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Geometric target margin strategy of proton craniospinal irradiation for pediatric medulloblastoma.

In proton craniospinal irradiation (CSI) for skeletally immature pediatric patients, a treatment plan should be developed to ensure that the dose is uniformly delivered to all vertebrae, considering the effects on bone growth balance. The technical (t) clinical target volume (CTV) is conventionally set by manually expanding the CTV from the entire intracranial space and thecal sac, based on the physician's experience. However, there are differences in contouring methods among physicians. Therefore, we aimed to propose a new geometric target margin strategy. Nine pediatric patients with medulloblastoma who underwent proton CSI were enrolled. We measured the following water equivalent lengths for each vertebra in each patient: body surface to the dorsal spinal canal, vertebral limbus, ventral spinal canal and spinous processes. A simulated tCTV (stCTV) was created by assigning geometric margins to the spinal canal using the measurement results such that the vertebral limb and dose distribution coincided with a margin assigned to account for the uncertainty of the proton beam range. The stCTV with a growth factor (correlation between body surface area and age) and tCTV were compared and evaluated. The median values of each index for cervical, thoracic and lumber spine were: the Hausdorff distance, 9.14, 9.84 and 9.77 mm; mean distance-to-agreement, 3.26, 2.65 and 2.64 mm; Dice coefficient, 0.84, 0.81 and 0.82 and Jaccard coefficient, 0.50, 0.60 and 0.62, respectively. The geometric target margin setting method used in this study was useful for creating an stCTV to ensure consistent and uniform planning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
5.00%
发文量
86
审稿时长
4-8 weeks
期刊介绍: The Journal of Radiation Research (JRR) is an official journal of The Japanese Radiation Research Society (JRRS), and the Japanese Society for Radiation Oncology (JASTRO). Since its launch in 1960 as the official journal of the JRRS, the journal has published scientific articles in radiation science in biology, chemistry, physics, epidemiology, and environmental sciences. JRR broadened its scope to include oncology in 2009, when JASTRO partnered with the JRRS to publish the journal. Articles considered fall into two broad categories: Oncology & Medicine - including all aspects of research with patients that impacts on the treatment of cancer using radiation. Papers which cover related radiation therapies, radiation dosimetry, and those describing the basis for treatment methods including techniques, are also welcomed. Clinical case reports are not acceptable. Radiation Research - basic science studies of radiation effects on livings in the area of physics, chemistry, biology, epidemiology and environmental sciences. Please be advised that JRR does not accept any papers of pure physics or chemistry. The journal is bimonthly, and is edited and published by the JRR Editorial Committee.
期刊最新文献
Characterization of acrylic phantom for use in quality assurance of BNCT beam output procedure. Cost-effectiveness analysis for multi adverse events of proton beam therapy for pediatric medulloblastoma in Japan. Feasibility of creating a daily adaptive plan using automatic DIR-created target and OARs contours in patients with prostate cancer magnetic-resonance-guided adaptive radiotherapy. Prophylactic cranial irradiation for limited-stage small-cell lung cancer in the modern magnetic resonance imaging era may be omitted: a propensity score-matched analysis. Elevated α/β ratio after hypofractionated radiotherapy correlated with DNA damage repairment in an experimental model of prostate cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1