Saikat Sengupta , Antonio Glenn , Baxter P. Rogers
{"title":"利用无线核磁共振标记和超短回波导航仪在 3 特斯拉条件下进行前瞻性头部运动校正。","authors":"Saikat Sengupta , Antonio Glenn , Baxter P. Rogers","doi":"10.1016/j.mri.2024.110238","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>Prospective motion correction (PMC) with inductively-coupled wireless NMR markers has been shown to be an effective plug-and-play method for dealing with head motion at 7 Tesla [<span><span>29</span></span>,<span><span>30</span></span>]. However, technical challenges such as one-to-one identification of three wireless markers, generation of hyper-intense marker artifacts and low marker peak SNR in the navigators has limited the adoption of this technique. The goal of this work is to introduce solutions to overcome these issues and extend this technique to PMC for brain imaging at 3 Tesla.</div></div><div><h3>Methods</h3><div>PMC with 6 degrees of freedom (DOF) was implemented using a novel ∼8 ms, ultrashort echo time (UTE) navigator in concert with optimally chosen MnCl<sub>2</sub> marker samples to minimize marker artifacts. Distinct head coil sensitivities were leveraged to enable identification and tracking of individual markers and a variable flip angle (VFA) scheme and real time filtering were used to boost marker SNR. PMC was performed in 3D T<sub>1</sub> weighted brain imaging at 3 Tesla with voluntary head motions in adult volunteers.</div></div><div><h3>Results</h3><div>PMC with wireless markers improved image quality in 3D T<sub>1</sub> weighted images in all subjects compared to non-motion corrected images for similar motions with no noticeable marker artifacts. Precision of motion tracking was found to be in the range of 0.01–0.06 mm/degrees. Navigator execution had minimal impact on sequence duration.</div></div><div><h3>Conclusions</h3><div>Wireless NMR markers provide an accurate, calibration-free and economical option for 6 DOF PMC in brain imaging across field strengths. Challenges in this technique can be addressed by combining navigator design, sample selection and real time data processing strategies.</div></div>","PeriodicalId":18165,"journal":{"name":"Magnetic resonance imaging","volume":"114 ","pages":"Article 110238"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prospective head motion correction at 3 Tesla with wireless NMR markers and ultrashort echo navigators\",\"authors\":\"Saikat Sengupta , Antonio Glenn , Baxter P. Rogers\",\"doi\":\"10.1016/j.mri.2024.110238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><div>Prospective motion correction (PMC) with inductively-coupled wireless NMR markers has been shown to be an effective plug-and-play method for dealing with head motion at 7 Tesla [<span><span>29</span></span>,<span><span>30</span></span>]. However, technical challenges such as one-to-one identification of three wireless markers, generation of hyper-intense marker artifacts and low marker peak SNR in the navigators has limited the adoption of this technique. The goal of this work is to introduce solutions to overcome these issues and extend this technique to PMC for brain imaging at 3 Tesla.</div></div><div><h3>Methods</h3><div>PMC with 6 degrees of freedom (DOF) was implemented using a novel ∼8 ms, ultrashort echo time (UTE) navigator in concert with optimally chosen MnCl<sub>2</sub> marker samples to minimize marker artifacts. Distinct head coil sensitivities were leveraged to enable identification and tracking of individual markers and a variable flip angle (VFA) scheme and real time filtering were used to boost marker SNR. PMC was performed in 3D T<sub>1</sub> weighted brain imaging at 3 Tesla with voluntary head motions in adult volunteers.</div></div><div><h3>Results</h3><div>PMC with wireless markers improved image quality in 3D T<sub>1</sub> weighted images in all subjects compared to non-motion corrected images for similar motions with no noticeable marker artifacts. Precision of motion tracking was found to be in the range of 0.01–0.06 mm/degrees. Navigator execution had minimal impact on sequence duration.</div></div><div><h3>Conclusions</h3><div>Wireless NMR markers provide an accurate, calibration-free and economical option for 6 DOF PMC in brain imaging across field strengths. Challenges in this technique can be addressed by combining navigator design, sample selection and real time data processing strategies.</div></div>\",\"PeriodicalId\":18165,\"journal\":{\"name\":\"Magnetic resonance imaging\",\"volume\":\"114 \",\"pages\":\"Article 110238\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic resonance imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0730725X24002194\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance imaging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0730725X24002194","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Prospective head motion correction at 3 Tesla with wireless NMR markers and ultrashort echo navigators
Purpose
Prospective motion correction (PMC) with inductively-coupled wireless NMR markers has been shown to be an effective plug-and-play method for dealing with head motion at 7 Tesla [29,30]. However, technical challenges such as one-to-one identification of three wireless markers, generation of hyper-intense marker artifacts and low marker peak SNR in the navigators has limited the adoption of this technique. The goal of this work is to introduce solutions to overcome these issues and extend this technique to PMC for brain imaging at 3 Tesla.
Methods
PMC with 6 degrees of freedom (DOF) was implemented using a novel ∼8 ms, ultrashort echo time (UTE) navigator in concert with optimally chosen MnCl2 marker samples to minimize marker artifacts. Distinct head coil sensitivities were leveraged to enable identification and tracking of individual markers and a variable flip angle (VFA) scheme and real time filtering were used to boost marker SNR. PMC was performed in 3D T1 weighted brain imaging at 3 Tesla with voluntary head motions in adult volunteers.
Results
PMC with wireless markers improved image quality in 3D T1 weighted images in all subjects compared to non-motion corrected images for similar motions with no noticeable marker artifacts. Precision of motion tracking was found to be in the range of 0.01–0.06 mm/degrees. Navigator execution had minimal impact on sequence duration.
Conclusions
Wireless NMR markers provide an accurate, calibration-free and economical option for 6 DOF PMC in brain imaging across field strengths. Challenges in this technique can be addressed by combining navigator design, sample selection and real time data processing strategies.
期刊介绍:
Magnetic Resonance Imaging (MRI) is the first international multidisciplinary journal encompassing physical, life, and clinical science investigations as they relate to the development and use of magnetic resonance imaging. MRI is dedicated to both basic research, technological innovation and applications, providing a single forum for communication among radiologists, physicists, chemists, biochemists, biologists, engineers, internists, pathologists, physiologists, computer scientists, and mathematicians.