针对坏死性小肠结肠炎的抗 eCIRP 策略。

IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Medicine Pub Date : 2024-09-20 DOI:10.1186/s10020-024-00935-3
Colleen P Nofi, Jose M Prince, Mariana R Brewer, Monowar Aziz, Ping Wang
{"title":"针对坏死性小肠结肠炎的抗 eCIRP 策略。","authors":"Colleen P Nofi, Jose M Prince, Mariana R Brewer, Monowar Aziz, Ping Wang","doi":"10.1186/s10020-024-00935-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease characterized by intestinal inflammation and injury, with high mortality risk. Extracellular cold-inducible RNA-binding protein (eCIRP) is a recently discovered damage-associated molecular pattern that propagates inflammation and tissue injury; however, the role of eCIRP in NEC remains unknown. We hypothesize that eCIRP exacerbates NEC pathogenesis and the novel eCIRP-scavenging peptide, milk fat globule-epidermal growth factor-factor VIII (MFG-E8)-derived oligopeptide 3 (MOP3), attenuates NEC severity, serving as a new therapeutic strategy to treat NEC.</p><p><strong>Methods: </strong>Stool samples from premature neonates were collected prospectively and eCIRP levels were measured. Wild-type (WT) and CIRP<sup>-/-</sup> mouse pups were subjected to NEC utilizing a combination of hypoxia and hypercaloric formula orogastric gavage with lipopolysaccharide supplementation. In parallel, WT pups were treated with MOP3 or vehicle. Endpoints including NEC severity, intestinal injury, barrier dysfunction, lung injury, and overall survival were determined.</p><p><strong>Results: </strong>Stool samples from NEC neonates had elevated eCIRP levels compared to healthy age-matched controls (p < 0.05). CIRP<sup>-/-</sup> pups were significantly protected from NEC severity, intestinal injury, bowel inflammation, intestinal barrier dysfunction, lung injury, and systemic inflammation. NEC survival was 100% for CIRP<sup>-/-</sup> pups compared to 65% for WT (p < 0.05). MOP3 treatment recapitulated the benefits afforded by CIRP-knockdown, preventing NEC severity, improving inflammatory profiles, and attenuating organ injury. MOP3 treatment improved NEC survival to 80% compared to 50% for vehicle treatment (p < 0.05).</p><p><strong>Conclusions: </strong>eCIRP exacerbates NEC evidenced by protection with CIRP-deficiency and administration of MOP3, a CIRP-directed therapeutic, in a murine model. Thus, eCIRP is a novel target with human relevance, and MOP3 is a promising treatment for lethal NEC.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414128/pdf/","citationCount":"0","resultStr":"{\"title\":\"An anti-eCIRP strategy for necrotizing enterocolitis.\",\"authors\":\"Colleen P Nofi, Jose M Prince, Mariana R Brewer, Monowar Aziz, Ping Wang\",\"doi\":\"10.1186/s10020-024-00935-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease characterized by intestinal inflammation and injury, with high mortality risk. Extracellular cold-inducible RNA-binding protein (eCIRP) is a recently discovered damage-associated molecular pattern that propagates inflammation and tissue injury; however, the role of eCIRP in NEC remains unknown. We hypothesize that eCIRP exacerbates NEC pathogenesis and the novel eCIRP-scavenging peptide, milk fat globule-epidermal growth factor-factor VIII (MFG-E8)-derived oligopeptide 3 (MOP3), attenuates NEC severity, serving as a new therapeutic strategy to treat NEC.</p><p><strong>Methods: </strong>Stool samples from premature neonates were collected prospectively and eCIRP levels were measured. Wild-type (WT) and CIRP<sup>-/-</sup> mouse pups were subjected to NEC utilizing a combination of hypoxia and hypercaloric formula orogastric gavage with lipopolysaccharide supplementation. In parallel, WT pups were treated with MOP3 or vehicle. Endpoints including NEC severity, intestinal injury, barrier dysfunction, lung injury, and overall survival were determined.</p><p><strong>Results: </strong>Stool samples from NEC neonates had elevated eCIRP levels compared to healthy age-matched controls (p < 0.05). CIRP<sup>-/-</sup> pups were significantly protected from NEC severity, intestinal injury, bowel inflammation, intestinal barrier dysfunction, lung injury, and systemic inflammation. NEC survival was 100% for CIRP<sup>-/-</sup> pups compared to 65% for WT (p < 0.05). MOP3 treatment recapitulated the benefits afforded by CIRP-knockdown, preventing NEC severity, improving inflammatory profiles, and attenuating organ injury. MOP3 treatment improved NEC survival to 80% compared to 50% for vehicle treatment (p < 0.05).</p><p><strong>Conclusions: </strong>eCIRP exacerbates NEC evidenced by protection with CIRP-deficiency and administration of MOP3, a CIRP-directed therapeutic, in a murine model. Thus, eCIRP is a novel target with human relevance, and MOP3 is a promising treatment for lethal NEC.</p>\",\"PeriodicalId\":18813,\"journal\":{\"name\":\"Molecular Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414128/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s10020-024-00935-3\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-024-00935-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:坏死性小肠结肠炎(NEC坏死性小肠结肠炎(NEC)是一种以肠道炎症和损伤为特征的严重胃肠道疾病,死亡率很高。细胞外冷诱导 RNA 结合蛋白(eCIRP)是最近发现的一种损伤相关分子模式,可传播炎症和组织损伤;然而,eCIRP 在坏死性小肠结肠炎中的作用仍然未知。我们假设 eCIRP 会加剧 NEC 的发病机制,而新型 eCIRP 清除肽--乳脂球-表皮生长因子-因子 VIII(MFG-E8)衍生的寡肽 3(MOP3)--会减轻 NEC 的严重程度,从而成为治疗 NEC 的新疗法:方法:对早产新生儿的粪便样本进行前瞻性采集,并测定 eCIRP 水平。对野生型(WT)和 CIRP-/- 小鼠幼崽进行 NEC 试验,采用缺氧和高热量配方口服结合补充脂多糖的方法。与此同时,WT幼鼠接受MOP3或药物治疗。终点包括NEC严重程度、肠道损伤、屏障功能障碍、肺损伤和总存活率:结果:与健康的年龄匹配对照组相比,NEC 新生儿粪便样本中的 eCIRP 水平升高(p -/-幼崽在 NEC 严重程度、肠道损伤、肠道炎症、肠道屏障功能障碍、肺损伤和全身炎症方面受到显著保护。CIRP-/- 幼崽的 NEC 存活率为 100%,而 WT 幼崽的存活率为 65%(p 结论:在小鼠模型中,CIRP 缺失和给予 MOP3(一种 CIRP 引导的疗法)的保护证明了 eCIRP 会加重 NEC。因此,eCIRP 是一个与人类相关的新靶点,而 MOP3 是一种治疗致命性 NEC 的有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An anti-eCIRP strategy for necrotizing enterocolitis.

Background: Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease characterized by intestinal inflammation and injury, with high mortality risk. Extracellular cold-inducible RNA-binding protein (eCIRP) is a recently discovered damage-associated molecular pattern that propagates inflammation and tissue injury; however, the role of eCIRP in NEC remains unknown. We hypothesize that eCIRP exacerbates NEC pathogenesis and the novel eCIRP-scavenging peptide, milk fat globule-epidermal growth factor-factor VIII (MFG-E8)-derived oligopeptide 3 (MOP3), attenuates NEC severity, serving as a new therapeutic strategy to treat NEC.

Methods: Stool samples from premature neonates were collected prospectively and eCIRP levels were measured. Wild-type (WT) and CIRP-/- mouse pups were subjected to NEC utilizing a combination of hypoxia and hypercaloric formula orogastric gavage with lipopolysaccharide supplementation. In parallel, WT pups were treated with MOP3 or vehicle. Endpoints including NEC severity, intestinal injury, barrier dysfunction, lung injury, and overall survival were determined.

Results: Stool samples from NEC neonates had elevated eCIRP levels compared to healthy age-matched controls (p < 0.05). CIRP-/- pups were significantly protected from NEC severity, intestinal injury, bowel inflammation, intestinal barrier dysfunction, lung injury, and systemic inflammation. NEC survival was 100% for CIRP-/- pups compared to 65% for WT (p < 0.05). MOP3 treatment recapitulated the benefits afforded by CIRP-knockdown, preventing NEC severity, improving inflammatory profiles, and attenuating organ injury. MOP3 treatment improved NEC survival to 80% compared to 50% for vehicle treatment (p < 0.05).

Conclusions: eCIRP exacerbates NEC evidenced by protection with CIRP-deficiency and administration of MOP3, a CIRP-directed therapeutic, in a murine model. Thus, eCIRP is a novel target with human relevance, and MOP3 is a promising treatment for lethal NEC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Medicine
Molecular Medicine 医学-生化与分子生物学
CiteScore
8.60
自引率
0.00%
发文量
137
审稿时长
1 months
期刊介绍: Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.
期刊最新文献
Oral administration of butylated hydroxytoluene induces neuroprotection in a streptozotocin-induced rat Alzheimer's disease model via inhibition of neuronal ferroptosis. Dexmedetomidine alleviates intestinal ischemia/reperfusion injury by modulating intestinal neuron autophagy and mitochondrial homeostasis via Nupr1 regulation. Single cell RNA-seq reveals cellular and transcriptional heterogeneity in the splenic CD11b+Ly6Chigh monocyte population expanded in sepsis-surviving mice. Deciphering the role of host-gut microbiota crosstalk via diverse sources of extracellular vesicles in colorectal cancer. Increased levels of versican and insulin-like growth factor 1 in peritumoral mammary adipose tissue are related to aggressiveness in estrogen receptor-positive breast cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1