{"title":"听觉皮层中编码复杂声音的神经元稀疏表征。","authors":"HiJee Kang , Patrick O. Kanold","doi":"10.1016/j.pneurobio.2024.102661","DOIUrl":null,"url":null,"abstract":"<div><div>Listening in complex sound environments requires rapid segregation of different sound sources, e.g., having a conversation with multiple speakers or other environmental sounds. Efficient processing requires fast encoding of inputs to adapt to target sounds and identify relevant information from past experiences. This adaptation process represents an early phase of implicit learning of the sound statistics to form auditory memory. The auditory cortex (ACtx) plays a crucial role in this implicit learning process, but the underlying circuits are unknown. In awake mice, we recorded neuronal responses in different ACtx subfields using in vivo 2-photon imaging of excitatory and inhibitory (parvalbumin; PV) neurons. We used a paradigm adapted from human studies that induced rapid implicit learning from passively presented complex sounds and imaged A1 Layer 4 (L4), A1 L2/3, and A2 L2/3. In this paradigm, a frozen spectro-temporally complex <em>‘Target’</em> sound randomly re-occurred within a stream of other random complex sounds. All ACtx subregions contained distinct groups of cells specifically responsive to complex acoustic sequences, indicating that even thalamocortical input layers (A1 L4) respond to complex sounds. Subgroups of excitatory and inhibitory cells in all subfields showed decreased responses for re-occurring Target sounds, indicating that ACtx is highly involved in the early implicit learning phase. At the population level, activity was more decorrelated to Target sounds independent of the duration of frozen token, subregions, and cell type. These findings suggest that ACtx and its input layers contribute to the early phase of auditory memory for complex sounds, suggesting a parallel strategy across ACtx areas and between excitatory and inhibitory neurons.</div></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"241 ","pages":"Article 102661"},"PeriodicalIF":6.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse representation of neurons for encoding complex sounds in the auditory cortex\",\"authors\":\"HiJee Kang , Patrick O. Kanold\",\"doi\":\"10.1016/j.pneurobio.2024.102661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Listening in complex sound environments requires rapid segregation of different sound sources, e.g., having a conversation with multiple speakers or other environmental sounds. Efficient processing requires fast encoding of inputs to adapt to target sounds and identify relevant information from past experiences. This adaptation process represents an early phase of implicit learning of the sound statistics to form auditory memory. The auditory cortex (ACtx) plays a crucial role in this implicit learning process, but the underlying circuits are unknown. In awake mice, we recorded neuronal responses in different ACtx subfields using in vivo 2-photon imaging of excitatory and inhibitory (parvalbumin; PV) neurons. We used a paradigm adapted from human studies that induced rapid implicit learning from passively presented complex sounds and imaged A1 Layer 4 (L4), A1 L2/3, and A2 L2/3. In this paradigm, a frozen spectro-temporally complex <em>‘Target’</em> sound randomly re-occurred within a stream of other random complex sounds. All ACtx subregions contained distinct groups of cells specifically responsive to complex acoustic sequences, indicating that even thalamocortical input layers (A1 L4) respond to complex sounds. Subgroups of excitatory and inhibitory cells in all subfields showed decreased responses for re-occurring Target sounds, indicating that ACtx is highly involved in the early implicit learning phase. At the population level, activity was more decorrelated to Target sounds independent of the duration of frozen token, subregions, and cell type. These findings suggest that ACtx and its input layers contribute to the early phase of auditory memory for complex sounds, suggesting a parallel strategy across ACtx areas and between excitatory and inhibitory neurons.</div></div>\",\"PeriodicalId\":20851,\"journal\":{\"name\":\"Progress in Neurobiology\",\"volume\":\"241 \",\"pages\":\"Article 102661\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301008224000972\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301008224000972","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Sparse representation of neurons for encoding complex sounds in the auditory cortex
Listening in complex sound environments requires rapid segregation of different sound sources, e.g., having a conversation with multiple speakers or other environmental sounds. Efficient processing requires fast encoding of inputs to adapt to target sounds and identify relevant information from past experiences. This adaptation process represents an early phase of implicit learning of the sound statistics to form auditory memory. The auditory cortex (ACtx) plays a crucial role in this implicit learning process, but the underlying circuits are unknown. In awake mice, we recorded neuronal responses in different ACtx subfields using in vivo 2-photon imaging of excitatory and inhibitory (parvalbumin; PV) neurons. We used a paradigm adapted from human studies that induced rapid implicit learning from passively presented complex sounds and imaged A1 Layer 4 (L4), A1 L2/3, and A2 L2/3. In this paradigm, a frozen spectro-temporally complex ‘Target’ sound randomly re-occurred within a stream of other random complex sounds. All ACtx subregions contained distinct groups of cells specifically responsive to complex acoustic sequences, indicating that even thalamocortical input layers (A1 L4) respond to complex sounds. Subgroups of excitatory and inhibitory cells in all subfields showed decreased responses for re-occurring Target sounds, indicating that ACtx is highly involved in the early implicit learning phase. At the population level, activity was more decorrelated to Target sounds independent of the duration of frozen token, subregions, and cell type. These findings suggest that ACtx and its input layers contribute to the early phase of auditory memory for complex sounds, suggesting a parallel strategy across ACtx areas and between excitatory and inhibitory neurons.
期刊介绍:
Progress in Neurobiology is an international journal that publishes groundbreaking original research, comprehensive review articles and opinion pieces written by leading researchers. The journal welcomes contributions from the broad field of neuroscience that apply neurophysiological, biochemical, pharmacological, molecular biological, anatomical, computational and behavioral analyses to problems of molecular, cellular, developmental, systems, and clinical neuroscience.