{"title":"灾害风险分析中既有方法与新兴人工智能和机器学习方法的兼容性。","authors":"Shital Thekdi, Unal Tatar, Joost Santos, Samrat Chatterjee","doi":"10.1111/risa.17640","DOIUrl":null,"url":null,"abstract":"<p><p>There is growing interest in leveraging advanced analytics, including artificial intelligence (AI) and machine learning (ML), for disaster risk analysis (RA) applications. These emerging methods offer unprecedented abilities to assess risk in settings where threats can emerge and transform quickly by relying on \"learning\" through datasets. There is a need to understand these emerging methods in comparison to the more established set of risk assessment methods commonly used in practice. These existing methods are generally accepted by the risk community and are grounded in use across various risk application areas. The next frontier in RA with emerging methods is to develop insights for evaluating the compatibility of those risk methods with more recent advancements in AI/ML, particularly with consideration of usefulness, trust, explainability, and other factors. This article leverages inputs from RA and AI experts to investigate the compatibility of various risk assessment methods, including both established methods and an example of a commonly used AI-based method for disaster RA applications. This article utilizes empirical evidence from expert perspectives to support key insights on those methods and the compatibility of those methods. This article will be of interest to researchers and practitioners in risk-analytics disciplines who leverage AI/ML methods.</p>","PeriodicalId":21472,"journal":{"name":"Risk Analysis","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the compatibility of established methods with emerging artificial intelligence and machine learning methods for disaster risk analysis.\",\"authors\":\"Shital Thekdi, Unal Tatar, Joost Santos, Samrat Chatterjee\",\"doi\":\"10.1111/risa.17640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is growing interest in leveraging advanced analytics, including artificial intelligence (AI) and machine learning (ML), for disaster risk analysis (RA) applications. These emerging methods offer unprecedented abilities to assess risk in settings where threats can emerge and transform quickly by relying on \\\"learning\\\" through datasets. There is a need to understand these emerging methods in comparison to the more established set of risk assessment methods commonly used in practice. These existing methods are generally accepted by the risk community and are grounded in use across various risk application areas. The next frontier in RA with emerging methods is to develop insights for evaluating the compatibility of those risk methods with more recent advancements in AI/ML, particularly with consideration of usefulness, trust, explainability, and other factors. This article leverages inputs from RA and AI experts to investigate the compatibility of various risk assessment methods, including both established methods and an example of a commonly used AI-based method for disaster RA applications. This article utilizes empirical evidence from expert perspectives to support key insights on those methods and the compatibility of those methods. This article will be of interest to researchers and practitioners in risk-analytics disciplines who leverage AI/ML methods.</p>\",\"PeriodicalId\":21472,\"journal\":{\"name\":\"Risk Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Risk Analysis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/risa.17640\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk Analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/risa.17640","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
On the compatibility of established methods with emerging artificial intelligence and machine learning methods for disaster risk analysis.
There is growing interest in leveraging advanced analytics, including artificial intelligence (AI) and machine learning (ML), for disaster risk analysis (RA) applications. These emerging methods offer unprecedented abilities to assess risk in settings where threats can emerge and transform quickly by relying on "learning" through datasets. There is a need to understand these emerging methods in comparison to the more established set of risk assessment methods commonly used in practice. These existing methods are generally accepted by the risk community and are grounded in use across various risk application areas. The next frontier in RA with emerging methods is to develop insights for evaluating the compatibility of those risk methods with more recent advancements in AI/ML, particularly with consideration of usefulness, trust, explainability, and other factors. This article leverages inputs from RA and AI experts to investigate the compatibility of various risk assessment methods, including both established methods and an example of a commonly used AI-based method for disaster RA applications. This article utilizes empirical evidence from expert perspectives to support key insights on those methods and the compatibility of those methods. This article will be of interest to researchers and practitioners in risk-analytics disciplines who leverage AI/ML methods.
期刊介绍:
Published on behalf of the Society for Risk Analysis, Risk Analysis is ranked among the top 10 journals in the ISI Journal Citation Reports under the social sciences, mathematical methods category, and provides a focal point for new developments in the field of risk analysis. This international peer-reviewed journal is committed to publishing critical empirical research and commentaries dealing with risk issues. The topics covered include:
• Human health and safety risks
• Microbial risks
• Engineering
• Mathematical modeling
• Risk characterization
• Risk communication
• Risk management and decision-making
• Risk perception, acceptability, and ethics
• Laws and regulatory policy
• Ecological risks.