一种广泛适用的量化心肌细胞分裂的方法可识别心肌梗死后的增殖事件。

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS Cell Reports Methods Pub Date : 2024-09-16 Epub Date: 2024-09-09 DOI:10.1016/j.crmeth.2024.100860
Samantha K Swift, Alexandra L Purdy, Tyler Buddell, Jerrell J Lovett, Smrithi V Chanjeevaram, Anooj Arkatkar, Caitlin C O'Meara, Michaela Patterson
{"title":"一种广泛适用的量化心肌细胞分裂的方法可识别心肌梗死后的增殖事件。","authors":"Samantha K Swift, Alexandra L Purdy, Tyler Buddell, Jerrell J Lovett, Smrithi V Chanjeevaram, Anooj Arkatkar, Caitlin C O'Meara, Michaela Patterson","doi":"10.1016/j.crmeth.2024.100860","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiomyocyte proliferation is a challenging metric to assess. Current methodologies have limitations in detecting the generation of new cardiomyocytes and technical challenges that reduce widespread applicability. Here, we describe an improved cell suspension and imaging-based methodology that can be broadly employed to assess cardiomyocyte cell division in standard laboratories across a multitude of model organisms and experimental conditions. We highlight additional metrics that can be gathered from the same cell preparations to enable additional relevant analyses to be performed. We incorporate additional antibody stains to address potential technical concerns of miscounting. Finally, we employ this methodology with a dual-thymidine analog-labeling approach to a post-infarction murine model, which allowed us to robustly identify unique cycling events, such as cardiomyocytes undergoing multiple rounds of cell division.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440799/pdf/","citationCount":"0","resultStr":"{\"title\":\"A broadly applicable method for quantifying cardiomyocyte cell division identifies proliferative events following myocardial infarction.\",\"authors\":\"Samantha K Swift, Alexandra L Purdy, Tyler Buddell, Jerrell J Lovett, Smrithi V Chanjeevaram, Anooj Arkatkar, Caitlin C O'Meara, Michaela Patterson\",\"doi\":\"10.1016/j.crmeth.2024.100860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cardiomyocyte proliferation is a challenging metric to assess. Current methodologies have limitations in detecting the generation of new cardiomyocytes and technical challenges that reduce widespread applicability. Here, we describe an improved cell suspension and imaging-based methodology that can be broadly employed to assess cardiomyocyte cell division in standard laboratories across a multitude of model organisms and experimental conditions. We highlight additional metrics that can be gathered from the same cell preparations to enable additional relevant analyses to be performed. We incorporate additional antibody stains to address potential technical concerns of miscounting. Finally, we employ this methodology with a dual-thymidine analog-labeling approach to a post-infarction murine model, which allowed us to robustly identify unique cycling events, such as cardiomyocytes undergoing multiple rounds of cell division.</p>\",\"PeriodicalId\":29773,\"journal\":{\"name\":\"Cell Reports Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440799/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.crmeth.2024.100860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

心肌细胞增殖是一项具有挑战性的评估指标。目前的方法在检测新心肌细胞的生成方面存在局限性,技术上的挑战也降低了其广泛适用性。在此,我们介绍了一种改进的细胞悬浮和成像方法,该方法可广泛应用于标准实验室评估多种模式生物和实验条件下的心肌细胞分裂。我们强调了可从相同的细胞制备中收集的其他指标,以便进行更多相关分析。我们加入了额外的抗体染色,以解决潜在的计数错误技术问题。最后,我们将这种方法与双胸苷类似物标记法一起用于梗死后的小鼠模型,这使我们能够有力地识别独特的循环事件,如经历多轮细胞分裂的心肌细胞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A broadly applicable method for quantifying cardiomyocyte cell division identifies proliferative events following myocardial infarction.

Cardiomyocyte proliferation is a challenging metric to assess. Current methodologies have limitations in detecting the generation of new cardiomyocytes and technical challenges that reduce widespread applicability. Here, we describe an improved cell suspension and imaging-based methodology that can be broadly employed to assess cardiomyocyte cell division in standard laboratories across a multitude of model organisms and experimental conditions. We highlight additional metrics that can be gathered from the same cell preparations to enable additional relevant analyses to be performed. We incorporate additional antibody stains to address potential technical concerns of miscounting. Finally, we employ this methodology with a dual-thymidine analog-labeling approach to a post-infarction murine model, which allowed us to robustly identify unique cycling events, such as cardiomyocytes undergoing multiple rounds of cell division.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
期刊最新文献
Optimized full-spectrum flow cytometry panel for deep immunophenotyping of murine lungs. A deep learning framework combining molecular image and protein structural representations identifies candidate drugs for pain. Adult zebrafish can learn Morris water maze-like tasks in a two-dimensional virtual reality system. Recovering single-cell expression profiles from spatial transcriptomics with scResolve. Mimicking and analyzing the tumor microenvironment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1