Alysson R S Carvalho, Alan Guimarães, Rodrigo Basilio, Marco A Conrado da Silva, Sandro Colli, Carolina Galhós de Aguiar, Rafael C Pereira, Liseane G Lisboa, Bruno Hochhegger, Rosana S Rodrigues
{"title":"利用密度测量和纹理分析自动量化胸部计算机断层扫描图像上的异常肺实质衰减。","authors":"Alysson R S Carvalho, Alan Guimarães, Rodrigo Basilio, Marco A Conrado da Silva, Sandro Colli, Carolina Galhós de Aguiar, Rafael C Pereira, Liseane G Lisboa, Bruno Hochhegger, Rosana S Rodrigues","doi":"10.1097/RTI.0000000000000804","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To compare texture-based analysis using convolutional neural networks (CNNs) against lung densitometry in detecting chest computed tomography (CT) image abnormalities.</p><p><strong>Material and methods: </strong>A U-NET was used for lung segmentation, and an ensemble of 7 CNN architectures was trained for the classification of low-attenuation areas (LAAs; emphysema, cysts), normal-attenuation areas (NAAs; normal parenchyma), and high-attenuation areas (HAAs; ground-glass opacities, crazy paving/linear opacity, consolidation). Lung densitometry also computes (LAAs, ≤-950 HU), NAAs (-949 to -700 HU), and HAAs (-699 to -250 HU). CNN-based and densitometry-based severity indices (CNN and Dens, respectively) were calculated as (LAA+HAA)/(LAA+NAA+HAA) in 812 CT scans from 176 normal subjects, 343 patients with emphysema, and 293 patients with interstitial lung disease (ILD). The correlation between CNN-derived and densitometry-derived indices was analyzed, alongside a comparison of severity indices among patient subgroups with emphysema and ILD, using the Spearman correlation and ANOVA with Bonferroni correction.</p><p><strong>Results: </strong>CNN-derived and densitometry-derived severity indices (SIs) showed a strong correlation (ρ=0.90) and increased with disease severity. CNN-SIs differed from densitometry SIs, being lower for emphysema and higher for moderate to severe ILD cases. CNN estimations for normal attenuation areas were higher than those from densitometry across all groups, indicating a potential for more accurate characterization of lung abnormalities.</p><p><strong>Conclusions: </strong>CNN outputs align closely with densitometry in assessing lung abnormalities on CT scans, offering improved estimates of normal areas and better distinguishing similar abnormalities. However, this requires higher computing power.</p>","PeriodicalId":49974,"journal":{"name":"Journal of Thoracic Imaging","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Quantification of Abnormal Lung Parenchymal Attenuation on Chest Computed Tomography Images Using Densitometry and Texture-based Analysis.\",\"authors\":\"Alysson R S Carvalho, Alan Guimarães, Rodrigo Basilio, Marco A Conrado da Silva, Sandro Colli, Carolina Galhós de Aguiar, Rafael C Pereira, Liseane G Lisboa, Bruno Hochhegger, Rosana S Rodrigues\",\"doi\":\"10.1097/RTI.0000000000000804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To compare texture-based analysis using convolutional neural networks (CNNs) against lung densitometry in detecting chest computed tomography (CT) image abnormalities.</p><p><strong>Material and methods: </strong>A U-NET was used for lung segmentation, and an ensemble of 7 CNN architectures was trained for the classification of low-attenuation areas (LAAs; emphysema, cysts), normal-attenuation areas (NAAs; normal parenchyma), and high-attenuation areas (HAAs; ground-glass opacities, crazy paving/linear opacity, consolidation). Lung densitometry also computes (LAAs, ≤-950 HU), NAAs (-949 to -700 HU), and HAAs (-699 to -250 HU). CNN-based and densitometry-based severity indices (CNN and Dens, respectively) were calculated as (LAA+HAA)/(LAA+NAA+HAA) in 812 CT scans from 176 normal subjects, 343 patients with emphysema, and 293 patients with interstitial lung disease (ILD). The correlation between CNN-derived and densitometry-derived indices was analyzed, alongside a comparison of severity indices among patient subgroups with emphysema and ILD, using the Spearman correlation and ANOVA with Bonferroni correction.</p><p><strong>Results: </strong>CNN-derived and densitometry-derived severity indices (SIs) showed a strong correlation (ρ=0.90) and increased with disease severity. CNN-SIs differed from densitometry SIs, being lower for emphysema and higher for moderate to severe ILD cases. CNN estimations for normal attenuation areas were higher than those from densitometry across all groups, indicating a potential for more accurate characterization of lung abnormalities.</p><p><strong>Conclusions: </strong>CNN outputs align closely with densitometry in assessing lung abnormalities on CT scans, offering improved estimates of normal areas and better distinguishing similar abnormalities. However, this requires higher computing power.</p>\",\"PeriodicalId\":49974,\"journal\":{\"name\":\"Journal of Thoracic Imaging\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thoracic Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/RTI.0000000000000804\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thoracic Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RTI.0000000000000804","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Automatic Quantification of Abnormal Lung Parenchymal Attenuation on Chest Computed Tomography Images Using Densitometry and Texture-based Analysis.
Purpose: To compare texture-based analysis using convolutional neural networks (CNNs) against lung densitometry in detecting chest computed tomography (CT) image abnormalities.
Material and methods: A U-NET was used for lung segmentation, and an ensemble of 7 CNN architectures was trained for the classification of low-attenuation areas (LAAs; emphysema, cysts), normal-attenuation areas (NAAs; normal parenchyma), and high-attenuation areas (HAAs; ground-glass opacities, crazy paving/linear opacity, consolidation). Lung densitometry also computes (LAAs, ≤-950 HU), NAAs (-949 to -700 HU), and HAAs (-699 to -250 HU). CNN-based and densitometry-based severity indices (CNN and Dens, respectively) were calculated as (LAA+HAA)/(LAA+NAA+HAA) in 812 CT scans from 176 normal subjects, 343 patients with emphysema, and 293 patients with interstitial lung disease (ILD). The correlation between CNN-derived and densitometry-derived indices was analyzed, alongside a comparison of severity indices among patient subgroups with emphysema and ILD, using the Spearman correlation and ANOVA with Bonferroni correction.
Results: CNN-derived and densitometry-derived severity indices (SIs) showed a strong correlation (ρ=0.90) and increased with disease severity. CNN-SIs differed from densitometry SIs, being lower for emphysema and higher for moderate to severe ILD cases. CNN estimations for normal attenuation areas were higher than those from densitometry across all groups, indicating a potential for more accurate characterization of lung abnormalities.
Conclusions: CNN outputs align closely with densitometry in assessing lung abnormalities on CT scans, offering improved estimates of normal areas and better distinguishing similar abnormalities. However, this requires higher computing power.
期刊介绍:
Journal of Thoracic Imaging (JTI) provides authoritative information on all aspects of the use of imaging techniques in the diagnosis of cardiac and pulmonary diseases. Original articles and analytical reviews published in this timely journal provide the very latest thinking of leading experts concerning the use of chest radiography, computed tomography, magnetic resonance imaging, positron emission tomography, ultrasound, and all other promising imaging techniques in cardiopulmonary radiology.
Official Journal of the Society of Thoracic Radiology:
Japanese Society of Thoracic Radiology
Korean Society of Thoracic Radiology
European Society of Thoracic Imaging.