通过铌晶界络合工程实现 N 型 Mg3(Sb,Bi)2 的超高近室温热电功勋值

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-09-24 DOI:10.1021/acsami.4c12046
Melis Ozen, Arda Baran Burcak, Duncan Zavanelli, Minsu Heo, Mujde Yahyaoglu, Yahya Oz, Ulrich Burkhardt, Hyun-Sik Kim, G Jeffrey Snyder, Umut Aydemir
{"title":"通过铌晶界络合工程实现 N 型 Mg3(Sb,Bi)2 的超高近室温热电功勋值","authors":"Melis Ozen, Arda Baran Burcak, Duncan Zavanelli, Minsu Heo, Mujde Yahyaoglu, Yahya Oz, Ulrich Burkhardt, Hyun-Sik Kim, G Jeffrey Snyder, Umut Aydemir","doi":"10.1021/acsami.4c12046","DOIUrl":null,"url":null,"abstract":"<p><p>Despite decades of extensive research on thermoelectric materials, Bi<sub>2</sub>Te<sub>3</sub> alloys have dominated room-temperature applications. However, recent advancements have highlighted the potential of alternative candidates, notably Mg<sub>3</sub>Sb<sub>2</sub>-Mg<sub>3</sub>Bi<sub>2</sub> alloys, for low- to mid-temperature ranges. This study optimizes the low-temperature composition of this alloy system through Nb addition (Mg<sub>3.2-<i>x</i></sub>Nb<sub><i>x</i></sub>(Sb<sub>0.3</sub>Bi<sub>0.7</sub>)<sub>1.996</sub>Te<sub>0.004</sub>), characterizing composition, microstructure, and transport properties. A high Mg<sub>3</sub>Bi<sub>2</sub> content improves the band structure by increasing weighted mobility while enhancing the microstructure. Crucially, it suppresses detrimental grain boundary scattering effects for room-temperature applications. While grain boundary scattering suppression is typically achieved through grain growth, our study reveals that Nb addition significantly reduces grain boundary resistance without increasing grain size. This phenomenon is attributed to a grain boundary complexion transition, where Nb addition transforms the highly resistive Mg<sub>3</sub>Bi<sub>2</sub>-rich boundary complexion into a less resistive, metal-like interfacial phase. This marks the rare demonstration of chemistry noticeably affecting grain boundary interfacial electrical resistance in Mg<sub>3</sub>Sb<sub>2</sub>-Mg<sub>3</sub>Bi<sub>2</sub>. The results culminate in a remarkable advancement in <i>zT</i>, reaching 1.14 at 330 K. The device <i>ZT</i> is found to be 1.03 at 350 K, which further increases to 1.24 at 523 K and reaches a theoretical maximum device efficiency (η<sub>max</sub>) of 10.5% at 623 K, underscoring its competitive performance. These findings showcase the outstanding low-temperature performance of <i>n</i>-type Mg<sub>3</sub>Bi<sub>2</sub>-Mg<sub>3</sub>Sb<sub>2</sub> alloys, rivaling Bi<sub>2</sub>Te<sub>3</sub>, and emphasize the critical need for continued exploration of complexion phase engineering to advance thermoelectric materials further.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Realizing Ultrahigh Near-Room-Temperature Thermoelectric Figure of Merit for N-Type Mg<sub>3</sub>(Sb,Bi)<sub>2</sub> through Grain Boundary Complexion Engineering with Niobium.\",\"authors\":\"Melis Ozen, Arda Baran Burcak, Duncan Zavanelli, Minsu Heo, Mujde Yahyaoglu, Yahya Oz, Ulrich Burkhardt, Hyun-Sik Kim, G Jeffrey Snyder, Umut Aydemir\",\"doi\":\"10.1021/acsami.4c12046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite decades of extensive research on thermoelectric materials, Bi<sub>2</sub>Te<sub>3</sub> alloys have dominated room-temperature applications. However, recent advancements have highlighted the potential of alternative candidates, notably Mg<sub>3</sub>Sb<sub>2</sub>-Mg<sub>3</sub>Bi<sub>2</sub> alloys, for low- to mid-temperature ranges. This study optimizes the low-temperature composition of this alloy system through Nb addition (Mg<sub>3.2-<i>x</i></sub>Nb<sub><i>x</i></sub>(Sb<sub>0.3</sub>Bi<sub>0.7</sub>)<sub>1.996</sub>Te<sub>0.004</sub>), characterizing composition, microstructure, and transport properties. A high Mg<sub>3</sub>Bi<sub>2</sub> content improves the band structure by increasing weighted mobility while enhancing the microstructure. Crucially, it suppresses detrimental grain boundary scattering effects for room-temperature applications. While grain boundary scattering suppression is typically achieved through grain growth, our study reveals that Nb addition significantly reduces grain boundary resistance without increasing grain size. This phenomenon is attributed to a grain boundary complexion transition, where Nb addition transforms the highly resistive Mg<sub>3</sub>Bi<sub>2</sub>-rich boundary complexion into a less resistive, metal-like interfacial phase. This marks the rare demonstration of chemistry noticeably affecting grain boundary interfacial electrical resistance in Mg<sub>3</sub>Sb<sub>2</sub>-Mg<sub>3</sub>Bi<sub>2</sub>. The results culminate in a remarkable advancement in <i>zT</i>, reaching 1.14 at 330 K. The device <i>ZT</i> is found to be 1.03 at 350 K, which further increases to 1.24 at 523 K and reaches a theoretical maximum device efficiency (η<sub>max</sub>) of 10.5% at 623 K, underscoring its competitive performance. These findings showcase the outstanding low-temperature performance of <i>n</i>-type Mg<sub>3</sub>Bi<sub>2</sub>-Mg<sub>3</sub>Sb<sub>2</sub> alloys, rivaling Bi<sub>2</sub>Te<sub>3</sub>, and emphasize the critical need for continued exploration of complexion phase engineering to advance thermoelectric materials further.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c12046\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c12046","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

尽管对热电材料进行了数十年的广泛研究,但 Bi2Te3 合金一直在室温应用领域占据主导地位。然而,最近的研究进展突显了替代材料的潜力,特别是 Mg3Sb2-Mg3Bi2 合金在中低温范围的应用。本研究通过添加铌(Mg3.2-xNbx(Sb0.3Bi0.7)1.996Te0.004)优化了这种合金体系的低温成分,并对成分、微观结构和传输特性进行了表征。高含量的 Mg3Bi2 通过增加加权迁移率改善了带状结构,同时增强了微观结构。最重要的是,它抑制了不利于室温应用的晶界散射效应。晶界散射的抑制通常是通过晶粒增长来实现的,而我们的研究发现,铌的添加能在不增加晶粒尺寸的情况下显著降低晶界电阻。这一现象归因于晶界复合转变,即铌的添加将高电阻率的富含 Mg3Bi2 的晶界复合转变为电阻率较低的类金属界面相。这标志着化学作用明显影响 Mg3Sb2-Mg3Bi2 晶界界面电阻的罕见现象。在 350 K 时,该器件的 ZT 值为 1.03,在 523 K 时进一步增至 1.24,在 623 K 时达到了 10.5% 的理论最大器件效率 (ηmax),凸显了其极具竞争力的性能。这些发现展示了 n 型 Mg3Bi2-Mg3Sb2 合金出色的低温性能,可与 Bi2Te3 相媲美,并强调了继续探索复相工程以进一步推动热电材料发展的迫切需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Realizing Ultrahigh Near-Room-Temperature Thermoelectric Figure of Merit for N-Type Mg3(Sb,Bi)2 through Grain Boundary Complexion Engineering with Niobium.

Despite decades of extensive research on thermoelectric materials, Bi2Te3 alloys have dominated room-temperature applications. However, recent advancements have highlighted the potential of alternative candidates, notably Mg3Sb2-Mg3Bi2 alloys, for low- to mid-temperature ranges. This study optimizes the low-temperature composition of this alloy system through Nb addition (Mg3.2-xNbx(Sb0.3Bi0.7)1.996Te0.004), characterizing composition, microstructure, and transport properties. A high Mg3Bi2 content improves the band structure by increasing weighted mobility while enhancing the microstructure. Crucially, it suppresses detrimental grain boundary scattering effects for room-temperature applications. While grain boundary scattering suppression is typically achieved through grain growth, our study reveals that Nb addition significantly reduces grain boundary resistance without increasing grain size. This phenomenon is attributed to a grain boundary complexion transition, where Nb addition transforms the highly resistive Mg3Bi2-rich boundary complexion into a less resistive, metal-like interfacial phase. This marks the rare demonstration of chemistry noticeably affecting grain boundary interfacial electrical resistance in Mg3Sb2-Mg3Bi2. The results culminate in a remarkable advancement in zT, reaching 1.14 at 330 K. The device ZT is found to be 1.03 at 350 K, which further increases to 1.24 at 523 K and reaches a theoretical maximum device efficiency (ηmax) of 10.5% at 623 K, underscoring its competitive performance. These findings showcase the outstanding low-temperature performance of n-type Mg3Bi2-Mg3Sb2 alloys, rivaling Bi2Te3, and emphasize the critical need for continued exploration of complexion phase engineering to advance thermoelectric materials further.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Development of a Highly Sensitive and Stretchable Charge-Transfer Fiber Strain Sensor for Wearable Applications Transient Phase-Mediated Li+ Transportation in the Lithium Lanthanum Titanate Solid-State Electrolyte Manipulation of Zn Deposition Behavior to Achieve High-Rate Aqueous Zinc Batteries via High Valence Zirconium Ions Thermodynamically and Dynamically Boosted Electrocatalytic Iodine Conversion with Hydroxyl Groups for High-Efficiency Zinc–Iodine Batteries Controlled Vapor–Liquid–Solid Growth of Long and Remarkably Thin Pb1–xSnxTe Nanowires with Strain-Tunable Ferroelectric Phase Transition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1