Rajesh Kancherla, T N Lohith, Sushma Deshmukh, Shekhar Reddy Mulka, Gouthami Kuruvalli, M B Madhusudana Reddy
{"title":"作为抗菌剂的新型喹啉取代 5H-chromeno [2,3-b] 吡啶衍生物的合成、光谱表征、DFT 计算、硅-ADMET 和分子对接分析。","authors":"Rajesh Kancherla, T N Lohith, Sushma Deshmukh, Shekhar Reddy Mulka, Gouthami Kuruvalli, M B Madhusudana Reddy","doi":"10.1007/s11030-024-10982-x","DOIUrl":null,"url":null,"abstract":"<p><p>A convenient, straightforward, and effective one-step reaction for the synthesis of a three-component compound of biologically relevant novel 2,4-diamino-5-(8-hydroxyquinolin-7-yl)-5H-chromeno[2,3-b] pyridine-3-carbonitrile derivatives was designed and synthesized. The synthesis was developed by the reaction between salicylaldehyde 1, 8-hydroxyquinoline 2, 2-aminopropene-1,1,3-tricarbonitrile 3, and the catalytic amount of triethylamine in ethanol at 78 °C. This methodology has many beneficial features, including the use of inexpensive and non-hazardous starting materials, single-flask reactions, optimized reaction conditions, the termination of intermediate isolation, easy workup, reducing organic waste products, being chromatography-free, and decreasing the reaction time along with quantitative yields with high functional group tolerance. A proposed mechanism with supporting experimental data is presented, including <sup>1</sup>H NMR, <sup>13</sup>C NMR, 2D NMR (HMBC, COSY, HSQC), mass, and IR spectroscopy, which are used to characterize the complete derivatives. All synthesized compounds were evaluated in vitro for their antibacterial activities against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa bacterial strains via the agar-well diffusion method compared with the reference drug gentamicin. The data indicated that compounds 4A, 4F, 4G, 4 J, and 4K consistently demonstrated strong antimicrobial activity against Gram-positive and Gram-negative bacteria. Furthermore, a molecular docking investigation was carried out to gain insight into the binding mode of the most promising compounds via the crystal structure of the S. aureus DNA gyrase complex with ciprofloxacin (PDB ID: 2XCT). Density functional theory (DFT) calculations were performed to determine the various molecular properties of the synthesized novel 2,4-diamino-5-(8-hydroxyquinolin-7-yl)-5H-chromeno [2,3-b] pyridine-3-carbonitrile derivatives (4A-4 M). On the basis of the reactive sites explored by the molecular electrostatic potential maps, the antibacterial activities of the compounds were screened.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, spectroscopic characterization, DFT calculations, in silico-ADMET and molecular docking analysis of novel quinoline-substituted 5H-chromeno [2,3-b] pyridine derivatives as antibacterial agents.\",\"authors\":\"Rajesh Kancherla, T N Lohith, Sushma Deshmukh, Shekhar Reddy Mulka, Gouthami Kuruvalli, M B Madhusudana Reddy\",\"doi\":\"10.1007/s11030-024-10982-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A convenient, straightforward, and effective one-step reaction for the synthesis of a three-component compound of biologically relevant novel 2,4-diamino-5-(8-hydroxyquinolin-7-yl)-5H-chromeno[2,3-b] pyridine-3-carbonitrile derivatives was designed and synthesized. The synthesis was developed by the reaction between salicylaldehyde 1, 8-hydroxyquinoline 2, 2-aminopropene-1,1,3-tricarbonitrile 3, and the catalytic amount of triethylamine in ethanol at 78 °C. This methodology has many beneficial features, including the use of inexpensive and non-hazardous starting materials, single-flask reactions, optimized reaction conditions, the termination of intermediate isolation, easy workup, reducing organic waste products, being chromatography-free, and decreasing the reaction time along with quantitative yields with high functional group tolerance. A proposed mechanism with supporting experimental data is presented, including <sup>1</sup>H NMR, <sup>13</sup>C NMR, 2D NMR (HMBC, COSY, HSQC), mass, and IR spectroscopy, which are used to characterize the complete derivatives. All synthesized compounds were evaluated in vitro for their antibacterial activities against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa bacterial strains via the agar-well diffusion method compared with the reference drug gentamicin. The data indicated that compounds 4A, 4F, 4G, 4 J, and 4K consistently demonstrated strong antimicrobial activity against Gram-positive and Gram-negative bacteria. Furthermore, a molecular docking investigation was carried out to gain insight into the binding mode of the most promising compounds via the crystal structure of the S. aureus DNA gyrase complex with ciprofloxacin (PDB ID: 2XCT). Density functional theory (DFT) calculations were performed to determine the various molecular properties of the synthesized novel 2,4-diamino-5-(8-hydroxyquinolin-7-yl)-5H-chromeno [2,3-b] pyridine-3-carbonitrile derivatives (4A-4 M). On the basis of the reactive sites explored by the molecular electrostatic potential maps, the antibacterial activities of the compounds were screened.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-024-10982-x\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-10982-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Synthesis, spectroscopic characterization, DFT calculations, in silico-ADMET and molecular docking analysis of novel quinoline-substituted 5H-chromeno [2,3-b] pyridine derivatives as antibacterial agents.
A convenient, straightforward, and effective one-step reaction for the synthesis of a three-component compound of biologically relevant novel 2,4-diamino-5-(8-hydroxyquinolin-7-yl)-5H-chromeno[2,3-b] pyridine-3-carbonitrile derivatives was designed and synthesized. The synthesis was developed by the reaction between salicylaldehyde 1, 8-hydroxyquinoline 2, 2-aminopropene-1,1,3-tricarbonitrile 3, and the catalytic amount of triethylamine in ethanol at 78 °C. This methodology has many beneficial features, including the use of inexpensive and non-hazardous starting materials, single-flask reactions, optimized reaction conditions, the termination of intermediate isolation, easy workup, reducing organic waste products, being chromatography-free, and decreasing the reaction time along with quantitative yields with high functional group tolerance. A proposed mechanism with supporting experimental data is presented, including 1H NMR, 13C NMR, 2D NMR (HMBC, COSY, HSQC), mass, and IR spectroscopy, which are used to characterize the complete derivatives. All synthesized compounds were evaluated in vitro for their antibacterial activities against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa bacterial strains via the agar-well diffusion method compared with the reference drug gentamicin. The data indicated that compounds 4A, 4F, 4G, 4 J, and 4K consistently demonstrated strong antimicrobial activity against Gram-positive and Gram-negative bacteria. Furthermore, a molecular docking investigation was carried out to gain insight into the binding mode of the most promising compounds via the crystal structure of the S. aureus DNA gyrase complex with ciprofloxacin (PDB ID: 2XCT). Density functional theory (DFT) calculations were performed to determine the various molecular properties of the synthesized novel 2,4-diamino-5-(8-hydroxyquinolin-7-yl)-5H-chromeno [2,3-b] pyridine-3-carbonitrile derivatives (4A-4 M). On the basis of the reactive sites explored by the molecular electrostatic potential maps, the antibacterial activities of the compounds were screened.