{"title":"化学调节 Akt 信号增强斑马鱼的脊髓再生能力","authors":"Yang-Jin Shen , Hao-Yuan Chen , Chia-Wei Chang , Yin-Cheng Huang , Yi-Chuan Cheng","doi":"10.1016/j.brainres.2024.149248","DOIUrl":null,"url":null,"abstract":"<div><div>Central nervous system lesions often cause permanent motility defects in mammals since the injured neurons cannot regenerate. In contrast, lower vertebrates like zebrafish can regenerate lost neurons and restore motor function. This study investigates the efficacy of SC79, a pan-Akt activator, and A674563, a selective Akt1 inhibitor, as potential therapeutic agents for promoting spinal cord recovery post-injury. Spinal cord injury was induced in zebrafish larvae, and the effects of SC79 and A674563 on neuronal and glial regeneration were examined. SC79 promoted neuronal regeneration without affecting glial bridging, while A674563 induced glial bridging but reduced neuronal regeneration. The combination of SC79 and A674563 induced both glial bridging and neuronal regeneration. Optomotor response tests revealed improved motor function recovery with the combined treatment compared to individual treatments. Additionally, these chemical treatments altered the expression of 12 Akt downstream transcriptional target genes, affirming that the combination treatment preferentially regulates spinal cord regeneration through its action on Akt signaling. These findings highlight the complex interplay of Akt signaling pathways in spinal cord regeneration and suggest potential therapeutic strategies for enhancing functional recovery in spinal cord injury patients.</div></div>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":"1846 ","pages":"Article 149248"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical modulation of Akt signaling enhances spinal cord regeneration in zebrafish\",\"authors\":\"Yang-Jin Shen , Hao-Yuan Chen , Chia-Wei Chang , Yin-Cheng Huang , Yi-Chuan Cheng\",\"doi\":\"10.1016/j.brainres.2024.149248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Central nervous system lesions often cause permanent motility defects in mammals since the injured neurons cannot regenerate. In contrast, lower vertebrates like zebrafish can regenerate lost neurons and restore motor function. This study investigates the efficacy of SC79, a pan-Akt activator, and A674563, a selective Akt1 inhibitor, as potential therapeutic agents for promoting spinal cord recovery post-injury. Spinal cord injury was induced in zebrafish larvae, and the effects of SC79 and A674563 on neuronal and glial regeneration were examined. SC79 promoted neuronal regeneration without affecting glial bridging, while A674563 induced glial bridging but reduced neuronal regeneration. The combination of SC79 and A674563 induced both glial bridging and neuronal regeneration. Optomotor response tests revealed improved motor function recovery with the combined treatment compared to individual treatments. Additionally, these chemical treatments altered the expression of 12 Akt downstream transcriptional target genes, affirming that the combination treatment preferentially regulates spinal cord regeneration through its action on Akt signaling. These findings highlight the complex interplay of Akt signaling pathways in spinal cord regeneration and suggest potential therapeutic strategies for enhancing functional recovery in spinal cord injury patients.</div></div>\",\"PeriodicalId\":9083,\"journal\":{\"name\":\"Brain Research\",\"volume\":\"1846 \",\"pages\":\"Article 149248\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S000689932400502X\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000689932400502X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Chemical modulation of Akt signaling enhances spinal cord regeneration in zebrafish
Central nervous system lesions often cause permanent motility defects in mammals since the injured neurons cannot regenerate. In contrast, lower vertebrates like zebrafish can regenerate lost neurons and restore motor function. This study investigates the efficacy of SC79, a pan-Akt activator, and A674563, a selective Akt1 inhibitor, as potential therapeutic agents for promoting spinal cord recovery post-injury. Spinal cord injury was induced in zebrafish larvae, and the effects of SC79 and A674563 on neuronal and glial regeneration were examined. SC79 promoted neuronal regeneration without affecting glial bridging, while A674563 induced glial bridging but reduced neuronal regeneration. The combination of SC79 and A674563 induced both glial bridging and neuronal regeneration. Optomotor response tests revealed improved motor function recovery with the combined treatment compared to individual treatments. Additionally, these chemical treatments altered the expression of 12 Akt downstream transcriptional target genes, affirming that the combination treatment preferentially regulates spinal cord regeneration through its action on Akt signaling. These findings highlight the complex interplay of Akt signaling pathways in spinal cord regeneration and suggest potential therapeutic strategies for enhancing functional recovery in spinal cord injury patients.
期刊介绍:
An international multidisciplinary journal devoted to fundamental research in the brain sciences.
Brain Research publishes papers reporting interdisciplinary investigations of nervous system structure and function that are of general interest to the international community of neuroscientists. As is evident from the journals name, its scope is broad, ranging from cellular and molecular studies through systems neuroscience, cognition and disease. Invited reviews are also published; suggestions for and inquiries about potential reviews are welcomed.
With the appearance of the final issue of the 2011 subscription, Vol. 67/1-2 (24 June 2011), Brain Research Reviews has ceased publication as a distinct journal separate from Brain Research. Review articles accepted for Brain Research are now published in that journal.