{"title":"飞镖快速学习会降低θ功率,但不受 Hf-tRNS 的影响:一项行为学和电生理学研究。","authors":"Giorgia Francesca Scaramuzzi , Anna Concetta Spina , Valerio Manippa , Francesca Amico , Ester Cornacchia , Annalisa Palmisano , Gaetano Scianatico , Richard Buscombe , Richard Avery , Volker Thoma , Davide Rivolta","doi":"10.1016/j.brainres.2024.149249","DOIUrl":null,"url":null,"abstract":"<div><div>Sports trainers have recently shown increasing interest in innovative methods, including transcranial electric stimulation, to enhance motor performance and boost the acquisition of new skills during training. However, studies on the effectiveness of these tools on fast visuomotor learning and brain activity are still limited. In this randomized single-blind, sham-controlled, between-subjects study, we investigated whether a single training session, either coupled or not with 2 mA online high-frequency transcranial random noise stimulation (hf-tRNS) over the bilateral primary motor cortex (M1), would affect dart-throwing performance (i.e., radial error, arm range of motion, and movement variability) in 37 healthy volunteers. In addition, potential neurophysiological correlates were monitored before and after the training through a 32-electrode portable electroencephalogram (EEG). Results revealed that a single training session improved radial error and arm range of motion during the dart-throwing task, but not movement variability. Furthermore, after the training, resting state-EEG data showed a decrease in theta power. Radial error, arm movement, and EEG were not further modulated by hf-tRNS. This indicates that a single training session, regardless of hf-tRNS administration, improves dart-throwing precision and movement accuracy. However, it does not improve movement variability, which might require multiple training sessions (expertise resulting in slow learning). Theta power decrease could describe a more efficient use of cognitive resources (i.e., attention and visuomotor skills) due to the fast dart-throwing learning. Further research could explore different sports by applying longer stimulation protocols and evaluating other EEG variables to enhance our understanding of the lasting impacts of multi-session hf-tRNS on the sensorimotor cortex within the framework of slow learning and training assistance.</div></div>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":"1846 ","pages":"Article 149249"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Darts fast-learning reduces theta power but is not affected by Hf-tRNS: A behavioral and electrophysiological investigation\",\"authors\":\"Giorgia Francesca Scaramuzzi , Anna Concetta Spina , Valerio Manippa , Francesca Amico , Ester Cornacchia , Annalisa Palmisano , Gaetano Scianatico , Richard Buscombe , Richard Avery , Volker Thoma , Davide Rivolta\",\"doi\":\"10.1016/j.brainres.2024.149249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sports trainers have recently shown increasing interest in innovative methods, including transcranial electric stimulation, to enhance motor performance and boost the acquisition of new skills during training. However, studies on the effectiveness of these tools on fast visuomotor learning and brain activity are still limited. In this randomized single-blind, sham-controlled, between-subjects study, we investigated whether a single training session, either coupled or not with 2 mA online high-frequency transcranial random noise stimulation (hf-tRNS) over the bilateral primary motor cortex (M1), would affect dart-throwing performance (i.e., radial error, arm range of motion, and movement variability) in 37 healthy volunteers. In addition, potential neurophysiological correlates were monitored before and after the training through a 32-electrode portable electroencephalogram (EEG). Results revealed that a single training session improved radial error and arm range of motion during the dart-throwing task, but not movement variability. Furthermore, after the training, resting state-EEG data showed a decrease in theta power. Radial error, arm movement, and EEG were not further modulated by hf-tRNS. This indicates that a single training session, regardless of hf-tRNS administration, improves dart-throwing precision and movement accuracy. However, it does not improve movement variability, which might require multiple training sessions (expertise resulting in slow learning). Theta power decrease could describe a more efficient use of cognitive resources (i.e., attention and visuomotor skills) due to the fast dart-throwing learning. Further research could explore different sports by applying longer stimulation protocols and evaluating other EEG variables to enhance our understanding of the lasting impacts of multi-session hf-tRNS on the sensorimotor cortex within the framework of slow learning and training assistance.</div></div>\",\"PeriodicalId\":9083,\"journal\":{\"name\":\"Brain Research\",\"volume\":\"1846 \",\"pages\":\"Article 149249\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006899324005031\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006899324005031","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Darts fast-learning reduces theta power but is not affected by Hf-tRNS: A behavioral and electrophysiological investigation
Sports trainers have recently shown increasing interest in innovative methods, including transcranial electric stimulation, to enhance motor performance and boost the acquisition of new skills during training. However, studies on the effectiveness of these tools on fast visuomotor learning and brain activity are still limited. In this randomized single-blind, sham-controlled, between-subjects study, we investigated whether a single training session, either coupled or not with 2 mA online high-frequency transcranial random noise stimulation (hf-tRNS) over the bilateral primary motor cortex (M1), would affect dart-throwing performance (i.e., radial error, arm range of motion, and movement variability) in 37 healthy volunteers. In addition, potential neurophysiological correlates were monitored before and after the training through a 32-electrode portable electroencephalogram (EEG). Results revealed that a single training session improved radial error and arm range of motion during the dart-throwing task, but not movement variability. Furthermore, after the training, resting state-EEG data showed a decrease in theta power. Radial error, arm movement, and EEG were not further modulated by hf-tRNS. This indicates that a single training session, regardless of hf-tRNS administration, improves dart-throwing precision and movement accuracy. However, it does not improve movement variability, which might require multiple training sessions (expertise resulting in slow learning). Theta power decrease could describe a more efficient use of cognitive resources (i.e., attention and visuomotor skills) due to the fast dart-throwing learning. Further research could explore different sports by applying longer stimulation protocols and evaluating other EEG variables to enhance our understanding of the lasting impacts of multi-session hf-tRNS on the sensorimotor cortex within the framework of slow learning and training assistance.
期刊介绍:
An international multidisciplinary journal devoted to fundamental research in the brain sciences.
Brain Research publishes papers reporting interdisciplinary investigations of nervous system structure and function that are of general interest to the international community of neuroscientists. As is evident from the journals name, its scope is broad, ranging from cellular and molecular studies through systems neuroscience, cognition and disease. Invited reviews are also published; suggestions for and inquiries about potential reviews are welcomed.
With the appearance of the final issue of the 2011 subscription, Vol. 67/1-2 (24 June 2011), Brain Research Reviews has ceased publication as a distinct journal separate from Brain Research. Review articles accepted for Brain Research are now published in that journal.