Zr-14Nb-5Ta-1Mo 合金在模拟体液中的腐蚀行为。

IF 1.9 4区 医学 Q2 DENTISTRY, ORAL SURGERY & MEDICINE Dental materials journal Pub Date : 2024-09-21 DOI:10.4012/dmj.2024-158
Tomoyo Manaka, Yusuke Tsutsumi, Maki Ashida, Peng Chen, Takao Hanawa
{"title":"Zr-14Nb-5Ta-1Mo 合金在模拟体液中的腐蚀行为。","authors":"Tomoyo Manaka, Yusuke Tsutsumi, Maki Ashida, Peng Chen, Takao Hanawa","doi":"10.4012/dmj.2024-158","DOIUrl":null,"url":null,"abstract":"<p><p>Metals that are used to reconstruct skeletal structures often interfere with magnetic resonance imaging (MRI) owing to differences in magnetic susceptibility; consequently, metals with lower magnetic susceptibilities need to be developed for use in implant devices. Herein, we investigated the corrosion properties of the Zr-14Nb-5Ta-1Mo alloy, which exhibits low magnetic susceptibility and excellent mechanical properties. The pitting potential of Zr-14Nb-5Ta-1Mo was higher than that of pure Zr. The passive current density of Zr-14Nb-5Ta-1Mo also higher than that of pure Zr, which is ascribable to slow reconstruction of the initial passive film associated with the presence of Nb and Ta. XPS revealed that the passive film is enriched with Nb and Ta. Therefore, while the Zr-14Nb-5Ta-1Mo alloy exhibited a high initial passive current density in simulated body fluid, it formed a stable passive film that suppressed localized corrosion. Zr-14Nb-5Ta-1Mo is therefore a prospective implant-material alloy candidate.</p>","PeriodicalId":11065,"journal":{"name":"Dental materials journal","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corrosion behavior of Zr-14Nb-5Ta-1Mo alloy in simulated body fluid.\",\"authors\":\"Tomoyo Manaka, Yusuke Tsutsumi, Maki Ashida, Peng Chen, Takao Hanawa\",\"doi\":\"10.4012/dmj.2024-158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metals that are used to reconstruct skeletal structures often interfere with magnetic resonance imaging (MRI) owing to differences in magnetic susceptibility; consequently, metals with lower magnetic susceptibilities need to be developed for use in implant devices. Herein, we investigated the corrosion properties of the Zr-14Nb-5Ta-1Mo alloy, which exhibits low magnetic susceptibility and excellent mechanical properties. The pitting potential of Zr-14Nb-5Ta-1Mo was higher than that of pure Zr. The passive current density of Zr-14Nb-5Ta-1Mo also higher than that of pure Zr, which is ascribable to slow reconstruction of the initial passive film associated with the presence of Nb and Ta. XPS revealed that the passive film is enriched with Nb and Ta. Therefore, while the Zr-14Nb-5Ta-1Mo alloy exhibited a high initial passive current density in simulated body fluid, it formed a stable passive film that suppressed localized corrosion. Zr-14Nb-5Ta-1Mo is therefore a prospective implant-material alloy candidate.</p>\",\"PeriodicalId\":11065,\"journal\":{\"name\":\"Dental materials journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dental materials journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4012/dmj.2024-158\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental materials journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4012/dmj.2024-158","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

由于磁感应强度的差异,用于重建骨骼结构的金属往往会干扰磁共振成像(MRI);因此,需要开发磁感应强度较低的金属,用于植入装置。在此,我们研究了具有低磁感应强度和优异机械性能的 Zr-14Nb-5Ta-1Mo 合金的腐蚀特性。Zr-14Nb-5Ta-1Mo 的点蚀电位高于纯 Zr。Zr-14Nb-5Ta-1Mo 的无源电流密度也比纯 Zr 高,这可能与 Nb 和 Ta 的存在导致初始无源膜重建缓慢有关。XPS 显示,被动膜富含 Nb 和 Ta。因此,虽然 Zr-14Nb-5Ta-1Mo 合金在模拟体液中表现出较高的初始无源电流密度,但它形成的稳定无源膜抑制了局部腐蚀。因此,Zr-14Nb-5Ta-1Mo 是一种很有前景的植入材料合金。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Corrosion behavior of Zr-14Nb-5Ta-1Mo alloy in simulated body fluid.

Metals that are used to reconstruct skeletal structures often interfere with magnetic resonance imaging (MRI) owing to differences in magnetic susceptibility; consequently, metals with lower magnetic susceptibilities need to be developed for use in implant devices. Herein, we investigated the corrosion properties of the Zr-14Nb-5Ta-1Mo alloy, which exhibits low magnetic susceptibility and excellent mechanical properties. The pitting potential of Zr-14Nb-5Ta-1Mo was higher than that of pure Zr. The passive current density of Zr-14Nb-5Ta-1Mo also higher than that of pure Zr, which is ascribable to slow reconstruction of the initial passive film associated with the presence of Nb and Ta. XPS revealed that the passive film is enriched with Nb and Ta. Therefore, while the Zr-14Nb-5Ta-1Mo alloy exhibited a high initial passive current density in simulated body fluid, it formed a stable passive film that suppressed localized corrosion. Zr-14Nb-5Ta-1Mo is therefore a prospective implant-material alloy candidate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Dental materials journal
Dental materials journal 医学-材料科学:生物材料
CiteScore
4.60
自引率
4.00%
发文量
102
审稿时长
3 months
期刊介绍: Dental Materials Journal is a peer review journal published by the Japanese Society for Dental Materials and Devises aiming to introduce the progress of the basic and applied sciences in dental materials and biomaterials. The dental materials-related clinical science and instrumental technologies are also within the scope of this journal. The materials dealt include synthetic polymers, ceramics, metals and tissue-derived biomaterials. Forefront dental materials and biomaterials used in developing filed, such as tissue engineering, bioengineering and artificial intelligence, are positively considered for the review as well. Recent acceptance rate of the submitted manuscript in the journal is around 30%.
期刊最新文献
Effects of repetitive insertion/removal and occlusal load on the retentive force of rest plate-I bar clasps made by selective laser melting. Shape reproducibility of retentive devices made of cast titanium. Bond strength of 4META-MMA-TBB resin to a CAD/CAM composite resin block and analysis of acetone-insoluble cured resin residues at adhesive interfaces. Effect of rosmarinic acid on microtensile bond strength of 1-step self-etch adhesive on artificial caries-affected dentine with or without NaOCl treatment: An in-vitro study. Rheological properties and handling characteristics of four injectable calcium hydroxide pastes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1