{"title":"混合本地能源市场:纳入基于效用函数的同行风险属性、可再生能源整合和电网约束分析","authors":"Mehran Moradi , Hooman Farzaneh","doi":"10.1016/j.ecmx.2024.100713","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes a novel hybrid Local Energy Market (LEM) trading framework meticulously designed for efficient energy trading among distribution network participants. The proposed LEM hybrid modeling framework aims to maximize social welfare by considering the behavior of market participants and incorporating network constraints into the transactional framework. To address the consumption behavior of market participants, the concept of the utility function with peer risk attributes is employed, differentiating between flexible and inflexible demands. Additionally, it adeptly manages various generation types, including diesel generators, wind and solar generators, and storage, each characterized by a unique cost function. The investigation extends to the analysis of the Japan Electric Power Exchange market (JEPX), taking into account the residential electricity demand in Tokyo, Japan, by comparing with community-based (CB) and peer-to-peer (P2P) markets and scrutinizing market player behavior across multiple scenarios. These scenarios include comparisons of different market structures, variations in prices, considerations of grid constraints, and diverse weather scenarios. The proposed framework undergoes rigorous evaluation utilizing the IEEE 33-bus and 69-bus standard test systems, with results demonstrating its practicality, superiority of the proposed market compared to the CB and P2P markets, and providing valuable insights into the intricate interplay between market players’ behavior and the dynamics of diverse market structures, price fluctuations, grid constraints, and weather scenarios.</div></div>","PeriodicalId":37131,"journal":{"name":"Energy Conversion and Management-X","volume":"24 ","pages":"Article 100713"},"PeriodicalIF":7.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590174524001910/pdfft?md5=ce6483d1f0761224fcd651b324f4a2fc&pid=1-s2.0-S2590174524001910-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Hybrid local energy markets: Incorporating utility function-based peer risk attributes, renewable energy integration, and grid constraints analysis\",\"authors\":\"Mehran Moradi , Hooman Farzaneh\",\"doi\":\"10.1016/j.ecmx.2024.100713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study proposes a novel hybrid Local Energy Market (LEM) trading framework meticulously designed for efficient energy trading among distribution network participants. The proposed LEM hybrid modeling framework aims to maximize social welfare by considering the behavior of market participants and incorporating network constraints into the transactional framework. To address the consumption behavior of market participants, the concept of the utility function with peer risk attributes is employed, differentiating between flexible and inflexible demands. Additionally, it adeptly manages various generation types, including diesel generators, wind and solar generators, and storage, each characterized by a unique cost function. The investigation extends to the analysis of the Japan Electric Power Exchange market (JEPX), taking into account the residential electricity demand in Tokyo, Japan, by comparing with community-based (CB) and peer-to-peer (P2P) markets and scrutinizing market player behavior across multiple scenarios. These scenarios include comparisons of different market structures, variations in prices, considerations of grid constraints, and diverse weather scenarios. The proposed framework undergoes rigorous evaluation utilizing the IEEE 33-bus and 69-bus standard test systems, with results demonstrating its practicality, superiority of the proposed market compared to the CB and P2P markets, and providing valuable insights into the intricate interplay between market players’ behavior and the dynamics of diverse market structures, price fluctuations, grid constraints, and weather scenarios.</div></div>\",\"PeriodicalId\":37131,\"journal\":{\"name\":\"Energy Conversion and Management-X\",\"volume\":\"24 \",\"pages\":\"Article 100713\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590174524001910/pdfft?md5=ce6483d1f0761224fcd651b324f4a2fc&pid=1-s2.0-S2590174524001910-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Management-X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590174524001910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management-X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590174524001910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Hybrid local energy markets: Incorporating utility function-based peer risk attributes, renewable energy integration, and grid constraints analysis
This study proposes a novel hybrid Local Energy Market (LEM) trading framework meticulously designed for efficient energy trading among distribution network participants. The proposed LEM hybrid modeling framework aims to maximize social welfare by considering the behavior of market participants and incorporating network constraints into the transactional framework. To address the consumption behavior of market participants, the concept of the utility function with peer risk attributes is employed, differentiating between flexible and inflexible demands. Additionally, it adeptly manages various generation types, including diesel generators, wind and solar generators, and storage, each characterized by a unique cost function. The investigation extends to the analysis of the Japan Electric Power Exchange market (JEPX), taking into account the residential electricity demand in Tokyo, Japan, by comparing with community-based (CB) and peer-to-peer (P2P) markets and scrutinizing market player behavior across multiple scenarios. These scenarios include comparisons of different market structures, variations in prices, considerations of grid constraints, and diverse weather scenarios. The proposed framework undergoes rigorous evaluation utilizing the IEEE 33-bus and 69-bus standard test systems, with results demonstrating its practicality, superiority of the proposed market compared to the CB and P2P markets, and providing valuable insights into the intricate interplay between market players’ behavior and the dynamics of diverse market structures, price fluctuations, grid constraints, and weather scenarios.
期刊介绍:
Energy Conversion and Management: X is the open access extension of the reputable journal Energy Conversion and Management, serving as a platform for interdisciplinary research on a wide array of critical energy subjects. The journal is dedicated to publishing original contributions and in-depth technical review articles that present groundbreaking research on topics spanning energy generation, utilization, conversion, storage, transmission, conservation, management, and sustainability.
The scope of Energy Conversion and Management: X encompasses various forms of energy, including mechanical, thermal, nuclear, chemical, electromagnetic, magnetic, and electric energy. It addresses all known energy resources, highlighting both conventional sources like fossil fuels and nuclear power, as well as renewable resources such as solar, biomass, hydro, wind, geothermal, and ocean energy.