Zhichao Guo , Weihong Zhou , Yuanxin Liu , Xiangyu Li , Bin Bai , Fengyan Li , Chao Luo , Gaixiu Yang
{"title":"热解温度对生物质热解过程中重金属迁移特性的影响","authors":"Zhichao Guo , Weihong Zhou , Yuanxin Liu , Xiangyu Li , Bin Bai , Fengyan Li , Chao Luo , Gaixiu Yang","doi":"10.1016/j.joei.2024.101840","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the distribution, morphology, and migration characteristics of heavy metals in the products obtained at different pyrolysis temperatures were studied. With an increase in the pyrolysis temperature, the heavy metals were more inclined to volatilize into bio-oil and syngas, and the volatilization ratio was Zn > Pb > Cr > Fe > Ni > Mn > Cu. At pyrolysis temperatures below 400 °C, heavy metals were transformed from the migratory states (F1, F2, F3) to the residual state (F4). When the pyrolysis temperature exceeded 500 °C, heavy metals in migration states (F1, F2, F3) migrated to the bio-oil and syngas. The residual states (F4) of Fe, Cu, Ni, and Mn were stable. Although Zn and Pb in the residual state (F4) volatilized at high temperatures, the volatilization ratio was lower than that in the migratory state (F1, F2, and F3). At a pyrolysis temperature of 900 °C, the potential risk factor (RI) of heavy metals decreased from 448.67 to 5.21, significantly reducing the environmental risk.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"117 ","pages":"Article 101840"},"PeriodicalIF":5.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of pyrolysis temperature on migration characteristics of heavy metals during biomass pyrolysis\",\"authors\":\"Zhichao Guo , Weihong Zhou , Yuanxin Liu , Xiangyu Li , Bin Bai , Fengyan Li , Chao Luo , Gaixiu Yang\",\"doi\":\"10.1016/j.joei.2024.101840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, the distribution, morphology, and migration characteristics of heavy metals in the products obtained at different pyrolysis temperatures were studied. With an increase in the pyrolysis temperature, the heavy metals were more inclined to volatilize into bio-oil and syngas, and the volatilization ratio was Zn > Pb > Cr > Fe > Ni > Mn > Cu. At pyrolysis temperatures below 400 °C, heavy metals were transformed from the migratory states (F1, F2, F3) to the residual state (F4). When the pyrolysis temperature exceeded 500 °C, heavy metals in migration states (F1, F2, F3) migrated to the bio-oil and syngas. The residual states (F4) of Fe, Cu, Ni, and Mn were stable. Although Zn and Pb in the residual state (F4) volatilized at high temperatures, the volatilization ratio was lower than that in the migratory state (F1, F2, and F3). At a pyrolysis temperature of 900 °C, the potential risk factor (RI) of heavy metals decreased from 448.67 to 5.21, significantly reducing the environmental risk.</div></div>\",\"PeriodicalId\":17287,\"journal\":{\"name\":\"Journal of The Energy Institute\",\"volume\":\"117 \",\"pages\":\"Article 101840\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Energy Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1743967124003180\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967124003180","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
本研究对不同热解温度下所得产物中重金属的分布、形态和迁移特征进行了研究。随着热解温度的升高,重金属更倾向于挥发到生物油和合成气中,挥发比例为 Zn > Pb > Cr > Fe > Ni > Mn > Cu。热解温度低于 400 ℃ 时,重金属从迁移态(F1、F2、F3)转变为残留态(F4)。当热解温度超过 500 ℃ 时,迁移态(F1、F2、F3)的重金属迁移到生物油和合成气中。铁、铜、镍和锰的残留态(F4)是稳定的。虽然残余态(F4)中的锌和铅在高温下会挥发,但挥发率低于迁移态(F1、F2 和 F3)。在 900 °C 的高温分解温度下,重金属的潜在风险系数(RI)从 448.67 降至 5.21,大大降低了环境风险。
Effect of pyrolysis temperature on migration characteristics of heavy metals during biomass pyrolysis
In this study, the distribution, morphology, and migration characteristics of heavy metals in the products obtained at different pyrolysis temperatures were studied. With an increase in the pyrolysis temperature, the heavy metals were more inclined to volatilize into bio-oil and syngas, and the volatilization ratio was Zn > Pb > Cr > Fe > Ni > Mn > Cu. At pyrolysis temperatures below 400 °C, heavy metals were transformed from the migratory states (F1, F2, F3) to the residual state (F4). When the pyrolysis temperature exceeded 500 °C, heavy metals in migration states (F1, F2, F3) migrated to the bio-oil and syngas. The residual states (F4) of Fe, Cu, Ni, and Mn were stable. Although Zn and Pb in the residual state (F4) volatilized at high temperatures, the volatilization ratio was lower than that in the migratory state (F1, F2, and F3). At a pyrolysis temperature of 900 °C, the potential risk factor (RI) of heavy metals decreased from 448.67 to 5.21, significantly reducing the environmental risk.
期刊介绍:
The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include:
Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies
Emissions and environmental pollution control; safety and hazards;
Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS;
Petroleum engineering and fuel quality, including storage and transport
Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling
Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems
Energy storage
The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.