热解温度对生物质热解过程中重金属迁移特性的影响

IF 5.6 2区 工程技术 Q2 ENERGY & FUELS Journal of The Energy Institute Pub Date : 2024-09-19 DOI:10.1016/j.joei.2024.101840
Zhichao Guo , Weihong Zhou , Yuanxin Liu , Xiangyu Li , Bin Bai , Fengyan Li , Chao Luo , Gaixiu Yang
{"title":"热解温度对生物质热解过程中重金属迁移特性的影响","authors":"Zhichao Guo ,&nbsp;Weihong Zhou ,&nbsp;Yuanxin Liu ,&nbsp;Xiangyu Li ,&nbsp;Bin Bai ,&nbsp;Fengyan Li ,&nbsp;Chao Luo ,&nbsp;Gaixiu Yang","doi":"10.1016/j.joei.2024.101840","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the distribution, morphology, and migration characteristics of heavy metals in the products obtained at different pyrolysis temperatures were studied. With an increase in the pyrolysis temperature, the heavy metals were more inclined to volatilize into bio-oil and syngas, and the volatilization ratio was Zn &gt; Pb &gt; Cr &gt; Fe &gt; Ni &gt; Mn &gt; Cu. At pyrolysis temperatures below 400 °C, heavy metals were transformed from the migratory states (F1, F2, F3) to the residual state (F4). When the pyrolysis temperature exceeded 500 °C, heavy metals in migration states (F1, F2, F3) migrated to the bio-oil and syngas. The residual states (F4) of Fe, Cu, Ni, and Mn were stable. Although Zn and Pb in the residual state (F4) volatilized at high temperatures, the volatilization ratio was lower than that in the migratory state (F1, F2, and F3). At a pyrolysis temperature of 900 °C, the potential risk factor (RI) of heavy metals decreased from 448.67 to 5.21, significantly reducing the environmental risk.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"117 ","pages":"Article 101840"},"PeriodicalIF":5.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of pyrolysis temperature on migration characteristics of heavy metals during biomass pyrolysis\",\"authors\":\"Zhichao Guo ,&nbsp;Weihong Zhou ,&nbsp;Yuanxin Liu ,&nbsp;Xiangyu Li ,&nbsp;Bin Bai ,&nbsp;Fengyan Li ,&nbsp;Chao Luo ,&nbsp;Gaixiu Yang\",\"doi\":\"10.1016/j.joei.2024.101840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, the distribution, morphology, and migration characteristics of heavy metals in the products obtained at different pyrolysis temperatures were studied. With an increase in the pyrolysis temperature, the heavy metals were more inclined to volatilize into bio-oil and syngas, and the volatilization ratio was Zn &gt; Pb &gt; Cr &gt; Fe &gt; Ni &gt; Mn &gt; Cu. At pyrolysis temperatures below 400 °C, heavy metals were transformed from the migratory states (F1, F2, F3) to the residual state (F4). When the pyrolysis temperature exceeded 500 °C, heavy metals in migration states (F1, F2, F3) migrated to the bio-oil and syngas. The residual states (F4) of Fe, Cu, Ni, and Mn were stable. Although Zn and Pb in the residual state (F4) volatilized at high temperatures, the volatilization ratio was lower than that in the migratory state (F1, F2, and F3). At a pyrolysis temperature of 900 °C, the potential risk factor (RI) of heavy metals decreased from 448.67 to 5.21, significantly reducing the environmental risk.</div></div>\",\"PeriodicalId\":17287,\"journal\":{\"name\":\"Journal of The Energy Institute\",\"volume\":\"117 \",\"pages\":\"Article 101840\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Energy Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1743967124003180\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967124003180","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究对不同热解温度下所得产物中重金属的分布、形态和迁移特征进行了研究。随着热解温度的升高,重金属更倾向于挥发到生物油和合成气中,挥发比例为 Zn > Pb > Cr > Fe > Ni > Mn > Cu。热解温度低于 400 ℃ 时,重金属从迁移态(F1、F2、F3)转变为残留态(F4)。当热解温度超过 500 ℃ 时,迁移态(F1、F2、F3)的重金属迁移到生物油和合成气中。铁、铜、镍和锰的残留态(F4)是稳定的。虽然残余态(F4)中的锌和铅在高温下会挥发,但挥发率低于迁移态(F1、F2 和 F3)。在 900 °C 的高温分解温度下,重金属的潜在风险系数(RI)从 448.67 降至 5.21,大大降低了环境风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of pyrolysis temperature on migration characteristics of heavy metals during biomass pyrolysis
In this study, the distribution, morphology, and migration characteristics of heavy metals in the products obtained at different pyrolysis temperatures were studied. With an increase in the pyrolysis temperature, the heavy metals were more inclined to volatilize into bio-oil and syngas, and the volatilization ratio was Zn > Pb > Cr > Fe > Ni > Mn > Cu. At pyrolysis temperatures below 400 °C, heavy metals were transformed from the migratory states (F1, F2, F3) to the residual state (F4). When the pyrolysis temperature exceeded 500 °C, heavy metals in migration states (F1, F2, F3) migrated to the bio-oil and syngas. The residual states (F4) of Fe, Cu, Ni, and Mn were stable. Although Zn and Pb in the residual state (F4) volatilized at high temperatures, the volatilization ratio was lower than that in the migratory state (F1, F2, and F3). At a pyrolysis temperature of 900 °C, the potential risk factor (RI) of heavy metals decreased from 448.67 to 5.21, significantly reducing the environmental risk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Energy Institute
Journal of The Energy Institute 工程技术-能源与燃料
CiteScore
10.60
自引率
5.30%
发文量
166
审稿时长
16 days
期刊介绍: The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include: Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies Emissions and environmental pollution control; safety and hazards; Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS; Petroleum engineering and fuel quality, including storage and transport Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems Energy storage The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.
期刊最新文献
Oxygen updraft gasification of euro cotton banknotes waste for hydrogen-rich syngas production Editorial Board Synergistic recovery of renewable hydrocarbon resources via co-pyrolysis of non-edible linseed and waste polypropylene: A study on influence of plastic on oil production and their utilization as a fuel for IC engine Comprehensive performance investigation of inexpensive oxygen carrier in chemical looping gasification of coal Cerium-induced modification of acid-base sites in Ni-zeolite catalysts for improved dry reforming of methane
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1